Browse > Article
http://dx.doi.org/10.1016/j.cap.2018.06.005

Spin-polarization and x-ray magnetic circular dichroism in GaAs  

Zohar, S. (Linac Coherent Light Source, SLAC National Accelerator Laboratory)
Ryan, P.J. (Advanced Photon Source, Argonne National Laboratory)
Kim, J.W. (Advanced Photon Source, Argonne National Laboratory)
Keavney, D.J. (Advanced Photon Source, Argonne National Laboratory)
Abstract
The combination of angular spin momentum with electronics is a promising successor to charge-based electronics. The conduction bands in GaAs may become spin-polarized via optical spin pumping, doping with magnetic ions, or induction of a moment with an external magnetic field. We investigated the spin populations in GaAs with x-ray magnetic circular dichroism for each of these three cases. We find strong anti-symmetric lineshapes at the Ga $L_3$ edge indicating conduction band spin splitting, with differences in line width and amplitude depending on the source of spin polarization.
Keywords
Spintronics; X ray magnetic circular dichroism; Spin-polarized; Carriers; Magnetic devices;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B.W. Adams, M.F. DeCamp, E.M. Dufresne, D.A. Reis, Picosecond laser-pump, x-ray probe spectroscopy of GaAs, Rev. Sci. Instrum. 73 (12) (2002) 4150.   DOI
2 D.D. Awschalom, E.F. Michael, Challenges for semiconductor spintronics, Nat. Phys. 3 (2007) 153.   DOI
3 S.D. Bader, S.S. Parkin, Spintronics, Ann. Rev. Conden. Matter Phys. 1 (2010) 71.   DOI
4 Paul V. Klimov, L. Abram, Falk, David J. Christle, Viatcheslav V. Dobrovitski, David D. Awschalom, Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble Science, Advances 1 (10) (2015) e1501015.
5 D. Paget, G. Lampel, B. Sapoval, Low field electron-nuclear spin coupling in gallium arsenide under optical pumping conditions, Phys. Rev. B 15 (1977) 5780.   DOI
6 M.I. Dyakonov, Spin Physics in Semiconductors, Springer, Berlin, 2008.
7 F. Meier, B.P. Zakharchenya, Optical Orientation, Elsevier Science Publishing Company, Inc, 1984.
8 D.T. Pierce, F. Meier, Photoemission of spin-polarized electrons from GaAs, Phys. Rev. B 13 (1976) 5484.   DOI
9 O. Wunnicke, P. Mavropoulos, R. Zeller, P.H. Dederichs, D. Grundler, Ballistic spin injection from Fe(001) in ZnSe and GaAs, Phys. Rev. B 65 (2002) 241306(R).   DOI
10 A.L. Falk, D.D. Awschalom, Quantum optics: spin charge ahead, Nature Photonics 7 (2013) 510.   DOI
11 M. Poggio, D.D. Awschalom, High-field optically detected nuclear magnetic resonance in GaAs, Appl. Phys. Lett. 86 (2005) 18203.
12 D.J. Keavney, D. Wu, J. Freeland, E. Johnston-Halperin, D.D. Awschalom, J. Shi, Element resolved spin configuration in ferromagnetic manganese-dopded gallium arsenide, Phys. Rev. Lett. 91 (18) (2003) 187203-1.   DOI
13 C. Kittel, Introduction to Solid State Physics, Wiley & Sons, Inc, Hoboken, 2005.
14 E. Yablonovitch, B.J. Skromme, R. Bhat, J.P. Harbison, T.T. Gmitter, Band bending, Fermi level pinning, and surface fixed charge on chemically prepared GaAs surfaces, Appl. Phys. Lett. 54 (6) (1989) 555.   DOI
15 T. Jarlborg, A.J. Freeman, Self-consistent LMTO approach to the electronic structure of Semi-Conductors: GaAs, Phys. Lett. 74 (5) (1979) 349.   DOI
16 R. Magri, S. Froyen, A. Zunger, Electronic structure and of states of the random Al0.5 Ga 0.5As, GaAs0.5 P0.5, and Ga0.5In0.5As semiconductor alloys, Phys. Rev. B 1991 (1991) 7947.
17 B. Heinrich, J.A. Bland, M.D. Stiles, Ultrathin Magnetic Structures III, Springer, Berlin, 2005.
18 P.J. Stephens, Theory of magnetic circular dichroism, J. Chem. Phys. 52 (1970) 3489.   DOI
19 I. Zutic, J. Fabian, S. Das Sarma, Spintronics: fundamentals and applications, Rev. Mod. Phys. 76 (2004) 323.   DOI