DOI QR코드

DOI QR Code

FINITE TEMPERATURE EFFECTS ON SPIN POLARIZATION OF NEUTRON MATTER IN A STRONG MAGNETIC FIELD

  • Isayev, Alexander A. (Kharkov Institute of Physics and Technology) ;
  • Yang, Jong-Mann (Department of Physics and the Institute for the Early Universe, Ewha Womans University)
  • Received : 2010.08.16
  • Accepted : 2010.09.09
  • Published : 2010.10.31

Abstract

Magnetars are neutron stars possessing a magnetic field of about $10^{14}-10^{15}$ G at the surface. Thermodynamic properties of neutron star matter, approximated by pure neutron matter, are considered at finite temperature in strong magnetic fields up to $10^{18}$ G which could be relevant for the inner regions of magnetars. In the model with the Skyrme effective interaction, it is shown that a thermodynamically stable branch of solutions for the spin polarization parameter corresponds to the case when the majority of neutron spins are oriented opposite to the direction of the magnetic field (i.e. negative spin polarization). Moreover, starting from some threshold density, the self-consistent equations have also two other branches of solutions, corresponding to positive spin polarization. The influence of finite temperatures on spin polarization remains moderate in the Skyrme model up to temperatures relevant for protoneutron stars. In particular, the scenario with the metastable state characterized by positive spin polarization, considered at zero temperature in Phys. Rev. C 80, 065801 (2009), is preserved at finite temperatures as well. It is shown that, above certain density, the entropy for various branches of spin polarization in neutron matter with the Skyrme interaction in a strong magnetic field shows the unusual behavior, being larger than that of the nonpolarized state. By providing the corresponding low-temperature analysis, we prove that this unexpected behavior should be related to the dependence of the entropy of a spin polarized state on the effective masses of neutrons with spin up and spin down, and to a certain constraint on them which is violated in the respective density range.

Keywords

References

  1. Akhiezer, A. I., Isayev, A. A., Peletminsky, S.V., Rekalo, A. P., & Yatsenko, A. A. 1997, Theory of Superfuidity of Nuclear Matter Based on the Fermi-Liquid Approach, JETP, 85, 1 https://doi.org/10.1134/1.558307
  2. Akhiezer, A. I., Krasil'nikov, V. V., Peletminsky, S. V., & Yatsenko, A. A. 1994, Research on Superfuidity and Superconductivity on the Basis of the Fermi Liquid Concept, Phys. Rep., 245, 1 https://doi.org/10.1016/0370-1573(94)90060-4
  3. Akhiezer, A. I., Laskin, N. V., & Peletminsky, S. V. 1996, Spontaneous Magnetization of Dense Neutron Matter and Electron-Positron Plasma, Phys. Lett. B, 383, 444 https://doi.org/10.1016/0370-2693(96)00730-7
  4. Amsler, C., et al. (Particle Data Group) 2008, Review of particle physics, Phys. Lett. B, 667, 1 https://doi.org/10.1016/j.physletb.2008.07.018
  5. Backmann, S. O., & KÄallman, C. G. 1973, Calculation of Landau's Fermi-Liquid Parameters in Pure Neutron Matter, Phys. Lett. B, 43, 263 https://doi.org/10.1016/0370-2693(73)90435-8
  6. Beraudo, A., De Pace, A., Martini, M., & Molinari, A. 2004, Mean Field at Finite Temperature and Symmetry Breaking, Ann. Phys. (NY), 311, 81 https://doi.org/10.1016/j.aop.2003.12.005
  7. Bordbar, G. H., & Bigdeli, M. 2007, Polarized Neutron Matter: A Lowest Order Constrained Variational Approach, Phys. Rev. C, 75, 045804 https://doi.org/10.1103/PhysRevC.75.045804
  8. Broderick, A., Prakash, M., & Lattimer, J. M. 2000, The Equation of State of Neutron Star Matter in Strong Magnetic Fields, ApJ, 537, 351 https://doi.org/10.1086/309010
  9. Cardall, C., Prakash, M., & Lattimer, J. M. 2001, Effects of Strong Magnetic Fields on Neutron Star Structure, ApJ, 554, 322 https://doi.org/10.1086/321370
  10. Chabanat, E., Bonche, P., Haensel, P., Meyer, J., & Schaeffer, R. 1998, A Skyrme Parametrization from Subnuclear to Neutron Star Densities. 2. Nuclei far from Stablities, Nucl. Phys. A, 635, 231 https://doi.org/10.1016/S0375-9474(98)00180-8
  11. Chakrabarty, S., Bandyopadhyay, D. & Pal, S. 1997, Dense Nuclear Matter In A Strong Magnetic Field, Phys. Rev. Lett., 78, 2898 https://doi.org/10.1103/PhysRevLett.78.2898
  12. Duncan, R. C. & Thompson, C. 1992, Formation of Very Strongly Magnetized Neutron Stars - Implications for Gamma-Ray Bursts, ApJ, 392, L9 https://doi.org/10.1086/186413
  13. Fantoni, S., Sarsa, A., & Schmidt, E. 2001, Spin Susceptibility of Neutron Matter at Zero Temperature, Phys. Rev. Lett., 87, 181101 https://doi.org/10.1103/PhysRevLett.87.181101
  14. Haensel, P. 1975, Magnetic Susceptibility of Neutron Matter, Phys. Rev. C, 11, 1822 https://doi.org/10.1103/PhysRevC.11.1822
  15. Ibrahim, A. I., Sa¯-Harb, S., Swank, J. H., Parke, W., & Zane, S. 2002, Discovery of Cyclotron Resonance Features in the Soft Gamma Repeater SGR 1806-20, ApJ, 574, L51 https://doi.org/10.1086/342366
  16. Isayev, A. A. 2003, Competition of Ferromagnetic and Antiferromagnetic Spin Ordering in Nuclear Matter, JETP Letters, 77, 251 https://doi.org/10.1134/1.1577751
  17. Isayev, A. A. 2005, Finite Temperature Effects in Antiferromagnetism of Nuclear Matter, Phys. Rev. C, 72, 014313 https://doi.org/10.1103/PhysRevC.72.014313
  18. Isayev, A. A. 2006, Spin Ordered Phase Transitions in Isospin Asymmetric Nuclear Matter, Phys. Rev. C, 74, 057301 https://doi.org/10.1103/PhysRevC.74.057301
  19. Isayev, A. A. 2007, Unusual Temperature Behavior of Entropy of Antiferromagnetic Spin State in Nuclear Matter with E®ective Finite Range Interaction, Phys. Rev. C, 76, 047305 https://doi.org/10.1103/PhysRevC.76.047305
  20. Isayev, A. A., & Yang, J. 2004a, Spin Polarized States in Strongly Asymmetric Nuclear Matter, Phys. Rev. C 69, 025801 https://doi.org/10.1103/PhysRevC.69.025801
  21. Isayev, A. A., & Yang, J. 2004b, Antiferromagnetic Spin Phase Transition in Nuclear Matter with Effective Gogny Interaction, Phys. Rev. C, 70, 064310 https://doi.org/10.1103/PhysRevC.70.064310
  22. Isayev, A. A., & Yang, J. 2009, Spin-Polarized States in Neutron Matter in a Strong Magnetic Field, Phys. Rev. C, 80, 065801 https://doi.org/10.1103/PhysRevC.80.065801
  23. Kouveliotou, C., et al. 1998, An X-Ray Pulsar With A Superstrong Magnetic Field In The Soft Gamma-Ray Repeater Sgr 1806-20, Nature, 393, 235 https://doi.org/10.1038/30410
  24. Kutschera, M., & Wojcik, W. 1994, Polarized Neutron Matter with Skyrme Forces, Phys. Lett. B, 325, 271 https://doi.org/10.1016/0370-2693(94)90009-4
  25. Lai, D. & Shapiro, S. 1991, Cold Equation of State in a Strong Magnetic Field: Effects of Inverse Beta-Decay, ApJ, 383, 745 https://doi.org/10.1086/170831
  26. Mao, G.-J., Kondratyev, V. N., Iwamoto, A., Li, Z.-X., Wu, X.-Z., Greiner, W. & Mikhailov, I. N. 2003, Neutron Star Composition in Strong Magnetic Fields, Chin. Phys. Lett., 20, 1238. https://doi.org/10.1088/0256-307X/20/8/315
  27. Marcos, S., Niembro, R., Quelle, M. L., & Navarro, J. 1991, Magnetic Susceptibility of Neutron Matter in a Relativistic Sigma + Omega + Pi + Rho Hartree-Fock Approach, Phys. Lett. B, 271, 277 https://doi.org/10.1016/0370-2693(91)90087-7
  28. Maruyama, T., & Tatsumi, T. 2001, Ferromagnetism of Nuclear Matter in the Relativistic Approach, Nucl. Phys. A, 693, 710 https://doi.org/10.1016/S0375-9474(01)00811-9
  29. Ostgaard, E. 1970, Neutron Matter Binding Energy and Magnetic Susceptibility, Nucl. Phys. A, 154, 202 https://doi.org/10.1016/0375-9474(70)91080-8
  30. Perez-Garcia, M. A. 2008, Magnetization of a Neutron Plasma with Skyrme and Gogny Forces in the Presence of a Strong Magnetic Field, Phys. Rev. C, 77,065806 https://doi.org/10.1103/PhysRevC.77.065806
  31. Pandharipande, V. R., Garde, V. K., & Srivastava, J. K. 1972, The Magnetic Susceptibility of Dense Neutron Matter, Phys. Lett. B, 38, 485 https://doi.org/10.1016/0370-2693(72)90522-9
  32. Reddy, S., Prakash, M., Lattimer, J. M., & Pons, J. A. 1999, Effects of Strong and Electromagnetic Correlations on Neutrino Interactions in Dense Matter, Phys. Rev. C 59, 2888 https://doi.org/10.1103/PhysRevC.59.2888
  33. Rice, M. J. 1969, The Hard-Sphere Fermi Gas and Ferromagnetism in Neutron Stars, Phys. Lett. A, 29, 637 https://doi.org/10.1016/0375-9601(69)91141-4
  34. Rikovska Stone, J., Miller, J.C., Koncewicz, R., Stevenson, P. D., & Strayer, M. R. 2003, Nuclear Matter and Neutron Star Properties Calculated with the Skyrme Interaction, Phys. Rev. C, 68, 034324 https://doi.org/10.1103/PhysRevC.68.034324
  35. Rios, A., Polls, A., & Vida~na, I. 2005, Ferromagnetic Instabilities in Neutron Matter at Finite Temperature with the Skyrme Interaction, Phys. Rev. C, 71, 055802 https://doi.org/10.1103/PhysRevC.71.055802
  36. Sammarruca, F., & Krastev, P. G. 2007, Spin Polarized Neutron Matter within the Dirac-Brueckner-Hartree-Fock Approach, Phys. Rev. C, 75, 034315 https://doi.org/10.1103/PhysRevC.75.034315
  37. Silverstein, S. D. 1969, Criteria for Ferromagnetism in Dense Neutron Fermi Liquids-Neutron Stars, Phys. Rev. Lett., 23, 139 https://doi.org/10.1103/PhysRevLett.23.139
  38. Thompson, C., & Duncan, R. C. 1996, The Soft Gamma Repeaters As Very Strongly Magnetized Neutron Stars. 2. Quiescent Neutrino, X-Ray, And Alfven Wave Emission, ApJ, 473, 322 https://doi.org/10.1086/178147
  39. Vautherin, D., & Brink, D. M. 1972, Hartree-Fock Calculations with Skyrme's Interaction. 1. Spherical Nuclei, Phys. Rev. C, 5, 626 https://doi.org/10.1103/PhysRevC.5.626
  40. Vidana, I., Polls, A., & Ramos, A. 2002, Spin Polarized Neutron Matter and Magnetic Susceptibility within the Brueckner-Hartree-Fock Approximation, Phys. Rev. C, 65, 035804 https://doi.org/10.1103/PhysRevC.65.035804
  41. Viduarre, A., Navarro, J., & Bernabeu, J. 1984, Magnetic Susceptibility of Neutron Matter and Nuclear Effective Interactions, A&A, 135, 361
  42. Woods, P. M., & Thompson, C. 2006, Soft Gamma Repeaters and Anomalous X-ray Pulsars: Magnetar Candidates, in Compact Stellar X-ray Sources, edited by W.H.G. Lewin and M. van der Klis, Cambridge University Press, New York, 2006, p. 547

Cited by

  1. Anisotropic pressure in strange quark matter in the presence of a strong magnetic field vol.40, pp.3, 2013, https://doi.org/10.1088/0954-3899/40/3/035105
  2. Absolute stability window and upper bound on the magnetic field strength in a strongly magnetized strange quark star vol.29, pp.30, 2014, https://doi.org/10.1142/S0217751X14501735
  3. Anisotropic pressure in the quark core of a strongly magnetized hybrid star vol.607, 2015, https://doi.org/10.1088/1742-6596/607/1/012013
  4. Anisotropic pressure in dense neutron matter under the presence of a strong magnetic field vol.707, pp.1, 2012, https://doi.org/10.1016/j.physletb.2011.12.003
  5. Spin and spin-isospin instabilities in asymmetric nuclear matter at zero and finite temperatures using Skyrme functionals vol.82, pp.4, 2010, https://doi.org/10.1103/PhysRevC.82.045804
  6. Upper bound on the magnetic field strength in the quark core of a strongly-magnetized compact star vol.65, pp.6, 2014, https://doi.org/10.3938/jkps.65.903
  7. Stability of magnetized strange quark matter in the MIT bag model with a density dependent bag pressure vol.91, pp.1, 2015, https://doi.org/10.1103/PhysRevC.91.015208
  8. Investigation of the field-induced ferromagnetic phase transition in spin-polarized neutron matter: A lowest order constrained variational approach vol.83, pp.4, 2011, https://doi.org/10.1103/PhysRevC.83.044310
  9. Finite temperature effects on anisotropic pressure and equation of state of dense neutron matter in an ultrastrong magnetic field vol.84, pp.6, 2011, https://doi.org/10.1103/PhysRevC.84.065802
  10. Anisotropic pressure in strange quark matter in the presence of a strong nonuniform magnetic field vol.98, pp.4, 2018, https://doi.org/10.1103/PhysRevD.98.043022