DOI QR코드

DOI QR Code

Production of Hyperpolarized 129Xe Using Spin Exchange Optical Pumping

  • Received : 2018.09.10
  • Published : 2018.11.30

Abstract

We present a constructed setup for polarizing $^{129}Xe$ noble gas. Hyperpolarized $^{129}Xe$ has been obtained via spin exchange with an optically pumped rubidium vapor. Optical pumping is based on polarizing the valence electron of rubidium by the resonant absorption of a circularly polarized laser light. The magnetic field of 30 G was used for obtaining $^{129}Xe$ polarization. The apparatus for detecting polarization is a nuclear magnetic resonance spectrometer. The highest $^{129}Xe$ polarization of 54% has been obtained using 60 W circularly polarized laser light with wavelength of 794.7 nm. The measured longitudinal relaxation time of the hyperpolarized $^{129}Xe$ was 72.3 minutes.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. W. Kim, S. S. Stepanyan, A. Kim, J. A. Tan and S.Woo, J. Korean Phys. Soc. 68, 183 (2016). https://doi.org/10.3938/jkps.68.183
  2. M. A. Bouchiat, T. R. Carver and C. M. Varnum, Phys. Rev. Lett. 5, 373 (1960). https://doi.org/10.1103/PhysRevLett.5.373
  3. B. Blankleider and R. Woloshyn, Phys. Rev. C 29, 538 (1984). https://doi.org/10.1103/PhysRevC.29.538
  4. B. Anderson, L. Auberbach, T. Averett, W. Bertozzi, T. Black et al., Phys. Lett. C 75, 034003 (2007).
  5. R. Woloshyn, Nucl. Phys. A 496, 749 (1989). https://doi.org/10.1016/0375-9474(89)90122-X
  6. P. Solvignon, N. Liyanage, J. P. Chen, S. Choi, K. Aniol et al., Phys. Rev. Lett. 101, 182502 (2008). https://doi.org/10.1103/PhysRevLett.101.182502
  7. J. Huang, K. Allada, C. Dutta, J. Katich, X. Qian et al., Phys. Rev. Lett. 108, 052001 (2012). https://doi.org/10.1103/PhysRevLett.108.052001
  8. J. Becker, J. Bermuth, M. Ebert, T. Grossmann, W. Heil et al., Nucl. Instr. Meth. Phys. Res. Sect. A 402, 327 (1998). https://doi.org/10.1016/S0168-9002(97)00858-9
  9. T. R. Gentile, W. C. Chen, G. L. Jones, E. Babcock and T. G. Walker, J. Res. Natl. Inst. Stand. Technol. 110, 299 (2005). https://doi.org/10.6028/jres.110.043
  10. M. A. Rosenberry and T. E. Chupp, Phys. Rev. Lett. 86, 22 (2001). https://doi.org/10.1103/PhysRevLett.86.22
  11. M. Ledbetter, Progress Toward a Search for a Permanent Electric Dipole Moment in Liquid $^{129}Xe$, Ph.D. Thesis, Princeton University, New Jersey, U.S., 2005.
  12. T. Sato, Y. Ichikawa, Y. Ohtomo, Y. Sakamoto, S. Kojima et al., Hyp. Inter. 230, 147 (2015). https://doi.org/10.1007/s10751-014-1113-9
  13. F. Kuchler, E. Babcock, M. Burghoff, T. Chupp, S. Degenkolb et al., Hyp. Inter. 237, 95 (2016). https://doi.org/10.1007/s10751-016-1302-9
  14. D. C. Bear, Fundamental Symmetry Tests Using a $^{129}Xe$/$^$^3He$$ Dual Noble Gas Maser, Ph.D. Thesis, Harvard University, Cambridge, Massachusetts, US, 2000.
  15. M. Burghoff, C. Gemmel, W. Heil, S. Karpuk, W. Kilian et al., J. Phys.: Conf. Ser. 295, 012017 (2011). https://doi.org/10.1088/1742-6596/295/1/012017
  16. T. E. Chupp, R. J. Hoare, R. L. Walsworth and B. Wu, Phys. Rev. Lett. 72, 2363 (1994). https://doi.org/10.1103/PhysRevLett.72.2363
  17. M. S. Albert, G. D. Cates, B. Driehuys, W. Happer, B. Saam et al., Nature 370, 199 (1994). https://doi.org/10.1038/370199a0
  18. E.Woolley, Production of Hyperpolarised $^{129}Xe$ for NMR Spectroscopy and Imaging, Ph.D. Thesis, University of Nottingham, England, UK, 2007.
  19. I. C. Ruset, Hyperpolarized $^{129}Xe$ Production and Applications, Ph.D. Thesis, University of New Hampshire, U.S., 2005.
  20. B. M. Goodson, J. Magn. Reson. 155, 157 (2002). https://doi.org/10.1006/jmre.2001.2341
  21. D. Raftery, H. Long, T. Meersmann, P. J. Grandinetti, L. Reven and A. Pines, Phys. Rev. Lett. 66, 584 (1991). https://doi.org/10.1103/PhysRevLett.66.584
  22. R. Sanders, D. Ma and M. Maze, Br. Med. Bull. 71, 115 (2004).
  23. R. M. Herman, Phys. Rev. A 137, 1062 (1965). https://doi.org/10.1103/PhysRev.137.A1062
  24. T. G. Walker and W. Happer, Rev. Mod. Phys. 69, 629 (1997). https://doi.org/10.1103/RevModPhys.69.629
  25. S. Appelt, A. B. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young and W. Happer, Phys. Rev. A 58, 1412 (1998). https://doi.org/10.1103/PhysRevA.58.1412
  26. G. Schrank, Z. Ma, A. Schoeck and B. Saam, Phys. Rev. A 80, 063424 (2009). https://doi.org/10.1103/PhysRevA.80.063424
  27. J. P. Hornak, The Basics of NMR (2017), https://www.cis.rit.edu/htbooks/nmr/index.html.
  28. B.C. Anger, Polarization and Relaxation in Hyperpolar-ized $^3He$ and $^{129}Xe$, Ph.D. Thesis, University of Utah, U.S., 2008.
  29. J. Singh, Alkali-Hybrid Spin Exchange Optically-Pumped Polarized $^3He$ Targets Used for Studying Neutron Structure, Ph.D. Thesis, University of Virginia, U.S., 2010.
  30. G. D. Cates, D. R. Benton, M. Gatzke, W. Happer, K. C. Hasson and N. R. Newbury, Phys. Rev. Lett. 65, 2591 (1990). https://doi.org/10.1103/PhysRevLett.65.2591