• Title/Summary/Keyword: speculative technique

Search Result 12, Processing Time 0.024 seconds

Accurate Prediction of Polymorphic Indirect Branch Target (간접 분기의 타형태 타겟 주소의 정확한 예측)

  • 백경호;김은성
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.6
    • /
    • pp.1-11
    • /
    • 2004
  • Modern processors achieve high performance exploiting avaliable Instruction Level Parallelism(ILP) by using speculative technique such as branch prediction. Traditionally, branch direction can be predicted at very high accuracy by 2-level predictor, and branch target address is predicted by Branch Target Buffer(BTB). Except for indirect branch, each of the branch has the unique target, so its prediction is very accurate via BTB. But because indirect branch has dynamically polymorphic target, indirect branch target prediction is very difficult. In general, the technique of branch direction prediction is applied to indirect branch target prediction, and much better accuracy than traditional BTB is obtained for indirect branch. We present a new indirect branch target prediction scheme which combines a indirect branch instruction with its data dependent register of the instruction executed earlier than the branch. The result of SPEC benchmark simulation which are obtained on SimpleScalar simulator shows that the proposed predictor obtains the most perfect prediction accuracy than any other existing scheme.

A Branch Predictor with New Recovery Mechanism in ILP Processors for Agriculture Information Technology (농업정보기술을 위한 ILP 프로세서에서 새로운 복구 메커니즘 적용 분기예측기)

  • Ko, Kwang Hyun;Cho, Young Il
    • Agribusiness and Information Management
    • /
    • v.1 no.2
    • /
    • pp.43-60
    • /
    • 2009
  • To improve the performance of wide-issue superscalar processors, it is essential to increase the width of instruction fetch and the issue rate. Removal of control hazard has been put forward as a significant new source of instruction-level parallelism for superscalar processors and the conditional branch prediction is an important technique for improving processor performance. Branch mispredictions, however, waste a large number of cycles, inhibit out-of-order execution, and waste electric power on mis-speculated instructions. Hence, the branch predictor with higher accuracy is necessary for good processor performance. In global-history-based predictors like gshare and GAg, many mispredictions come from commit update of the branch history. Some works on this subject have discussed the need for speculative update of the history and recovery mechanisms for branch mispredictions. In this paper, we present a new mechanism for recovering the branch history after a misprediction. The proposed mechanism adds an age_counter to the original predictor and doubles the size of the branch history register. The age_counter counts the number of outstanding branches and uses it to recover the branch history register. Simulation results on the SimpleScalar 3.0/PISA tool set and the SPECINT95 benchmarks show that gshare and GAg with the proposed recovery mechanism improved the average prediction accuracy by 2.14% and 9.21%, respectively and the average IPC by 8.75% and 18.08%, respectively over the original predictor.

  • PDF

A study on the application of legal design methodology for commercialization of security tokens

  • Sangyub Han;Hokyoung Ryu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.117-128
    • /
    • 2024
  • In this paper, we propose a process for deriving priority tasks using the legal design technique in a situation where there is high uncertainty in the market and legal system regarding the commercialization of security tokens based on blockchain and distributed ledger technology. To issue and distribute securities tokens, we conducted a legal design workshop with participants who applied for innovative financial services (financial regulatory sandbox). During the workshop, participants harmonized their interests and deliberated on readiness, considering both legal and technical factors. The aim was to ascertain the feasibility of identifying prioritized objectives for future endeavors. The legal design technique facilitates consensus-building among stakeholders in an uncertain environment by confirming and adjusting differing perspectives and disagreements based on mutual understanding. The key stages include the empathetic process called "Family Therapy," the "N whys" for problem definition, and the speculative scenario design for problem-solving. This approach distinguishes itself from user-centered design thinking. Given the diverse stakeholders involved, effective facilitation by the facilitator is crucial during the legal design workshop preparation and execution.

Prediction Accuracy Enhancement of Function Return Address via RAS Pollution Prevention (RAS 오염 방지를 통한 함수 복귀 예측 정확도 향상)

  • Kim, Ju-Hwan;Kwak, Jong-Wook;Jhang, Seong-Tae;Jhon, Chu-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.3
    • /
    • pp.54-68
    • /
    • 2011
  • As the prediction accuracy of conditional branch instruction is increased highly, the importance of prediction accuracy for unconditional branch instruction is also increased accordingly. Except the case of RAS(Return Address Stack) overflow, the prediction accuracy of function return address should be 100% theoretically. However, there exist some possibilities of miss-predictions for RAS return addresses, when miss-speculative execution paths are invalidated, in case of modern speculative microprocessor environments. In this paper, we propose the RAS rename technique to prevent RAS pollution, results in the reduction of RAS miss-prediction. We divide a RAS stack into a soft-stack and a hard-stack and we handle the instructions for speculative execution in the soft-stack. When some overwrites happen in the soft-stack, we move the soft-stack data into the hard-stack. In addition, we propose an enhanced version of RAS rename scheme. In simulation results, our solution provide 1/90 reduction of miss-prediction of function return address, results in up to 6.85% IPC improvement, compared to normal RAS method. Furthermore, it reduce miss-prediction ratio as 1/9, compared to previous technique.

Measurement and Analysis of Power Dissipation of Value Speculation in Superscalar Processors (슈퍼스칼라 프로세서에서 값 예측을 이용한 모험적 실행의 전력소모 측정 및 분석)

  • 이상정;이명근;신화정
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.12
    • /
    • pp.724-735
    • /
    • 2003
  • In recent high-performance superscalar processors, the result value of an instruction is predicted to improve instruction-level parallelism by breaking data dependencies. Using those predicted values, instructions are speculatively executed and substantial performance can be gained. It, however, requires additional power consumption due to the frequent access and update of the value prediction table. In this paper, first, the trade-off between the performance improvement and the increased power consumption for value prediction is measured and analyzed. And, in order to reduce additional power consumption without performance loss, the technique of controlling speculative execution with confidence counter and predicting useful instructions is developed. Also, in order to prove the validity, a tool is developed that can simulate processor behavior at cycle-level and measure total energy consumption and power consumption per cycle.

Sepculative Updates of a Stride Value Predictor in Wide-Issue Processors (와이드 이슈 프로세서를 위한 스트라이드 값 예측기의 모험적 갱신)

  • Jeon, Byeong-Chan;Lee, Sang-Jeong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.28 no.11
    • /
    • pp.601-612
    • /
    • 2001
  • In superscalar processors, value prediction is a technique that breaks true data dependences by predicting the outcome of an instruction in order to exploit instruction level parallelism(ILP). A value predictor looks up the prediction table for the prediction value of an instruction in the instruction fetch stage, and updates with the prediction result and the resolved value after the execution of the instruction for the next prediction. However, as the instruction fetch and issue rates are increased, the same instruction is likely to fetch again before is has been updated in the predictor. Hence, the predictor looks up the stale value in the table and this mostly will cause incorrect value predictions. In this paper, a stride value predictor with the capability of speculative updates, which can update the prediction table speculatively without waiting until the instruction has been completed, is proposed. Also, the performance of the scheme is examined using Simplescalar simulator for SPECint95 benchmarks in which our value predictor is added.

  • PDF

Simple Recovery Mechanism for Branch Misprediction in Global-History-Based Branch Predictors Allowing the Speculative Update of Branch History (분기 히스토리의 모험적 갱신을 허용하는 전역 히스토리 기반 분기예측기에서 분기예측실패를 위한 간단한 복구 메커니즘)

  • Ko, Kwang-Hyun;Cho, Young-Il
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.6
    • /
    • pp.306-313
    • /
    • 2005
  • Conditional branch prediction is an important technique for improving processor performance. Branch mispredictions, however, waste a large number of cycles, inhibit out-of-order execution, and waste electric power on mis-speculated instructions. Hence, the branch predictor with higher accuracy is necessary for good processor performance. In global-history-based predictors like gshare and GAg, many mispredictions come from commit update of the history. Some works on this subject have discussed the need for speculative update of the history and recovery mechanisms for branch mispredictions. In this paper, we present a simple mechanism for recovering the branch history after a misprediction. The proposed mechanism adds an age_counter to the original predictor and doubles the size of the branch history register. The age_counter counts the number of outstanding branches and uses it to recover the branch history register. Simulation results on the Simplescalar 3.0/PISA tool set and the SPECINTgS benchmarks show that gshare and GAg with the proposed recovery mechanism improved the average prediction accuracy by 2.14$\%$ and 9.21$\%$, respectively and the average IPC by 8.75$\%$ and 18.08$\%$, respectively over the original predictor.

Analysis on the Thermal Efficiency of Branch Prediction Techniques in 3D Multicore Processors (3차원 구조 멀티코어 프로세서의 분기 예측 기법에 관한 온도 효율성 분석)

  • Ahn, Jin-Woo;Choi, Hong-Jun;Kim, Jong-Myon;Kim, Cheol-Hong
    • The KIPS Transactions:PartA
    • /
    • v.19A no.2
    • /
    • pp.77-84
    • /
    • 2012
  • Speculative execution for improving instruction-level parallelism is widely used in high-performance processors. In the speculative execution technique, the most important factor is the accuracy of branch predictor. Unfortunately, complex branch predictors for improving the accuracy can cause serious thermal problems in 3D multicore processors. Thermal problems have negative impact on the processor performance. This paper analyzes two methods to solve the thermal problems in the branch predictor of 3D multi-core processors. First method is dynamic thermal management which turns off the execution of the branch predictor when the temperature of the branch predictor exceeds the threshold. Second method is thermal-aware branch predictor placement policy by considering each layer's temperature in 3D multi-core processors. According to our evaluation, the branch predictor placement policy shows that average temperature is $87.69^{\circ}C$, and average maximum temperature gradient is $11.17^{\circ}C$. And, dynamic thermal management shows that average temperature is $89.64^{\circ}C$ and average maximum temperature gradient is $17.62^{\circ}C$. Proposed branch predictor placement policy has superior thermal efficiency than the dynamic thermal management. In the perspective of performance, the proposed branch predictor placement policy degrades the performance by 3.61%, while the dynamic thermal management degrades the performance by 27.66%.

Sequential and Selective Recovery Mechanism for Value Misprediction (값 예측 오류를 위한 순차적이고 선택적인 복구 방식)

  • 이상정;전병찬
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.1_2
    • /
    • pp.67-77
    • /
    • 2004
  • Value prediction is a technique to obtain performance gains by supplying earlier source values of its data dependent instructions using predicted value of a instruction. To fully exploit the potential of value speculation, however, the efficient recovery mechanism is necessary in case of value misprediction. In this paper, we propose a sequential and selective recovery mechanism for value misprediction. It searches data dependency chain of the mispredicted instruction sequentially without pipeline stalls and adverse impact on clock cycle time. In our scheme, only the dependent instructions on the predicted instruction is selectively squashed and reissued in case of value misprediction.

Influence on Modern Costumes of Dunhuang Feitian costumes (돈황비천 복식이 현대복식에 주는 의미)

  • 임영자
    • Journal of the Korean Society of Costume
    • /
    • v.23
    • /
    • pp.53-65
    • /
    • 1994
  • The images signifying flight in modern costumes are not made of one characteristic but the combination of complex meanings. Among the distinctive features some of them are as follows. First, the flying styles found in the costumes showed the birds as agents which sent human spirit to the celestial body. By simplifying the images of the wings connecting the present age with the heavenly body, the transforming emotions towards rhythm, direction, and organic curves transcending the real objectively constitutes a new space for expression. Second, colors appeal directly to man's emotions and incites emotional responses. The flying was shown in lines and colors. By using horizontal , vertical, oblique, and spiral lines and contrasted and paralleled colors, man's desire to fly dwells in newly colored space by reflecting speculative emotion through uniting surface. Third, the flying except for the costumes can be found in the advertisement through model's pose and camera technique, the flying itself is described through model's pose, the materials of the costumes, details, and sustaining stuffs. This symbolizes man's wish towards the unknown world vividly and dynamically. As discussed above the spirit of flying was, when expressed distinctively , in accordance with the varying cultural traits and transitions. The shape made by the vitality of symbolizing flying birds and animals along with the flying in the natural aspects such as wind and cloud were reappeared, simplified and symbolized , in modern costumes as consituting a new modeling space.

  • PDF