• Title/Summary/Keyword: spectrum hole

Search Result 147, Processing Time 0.026 seconds

Electrical and Optical Properties of P-type Amorphous Oxide Semiconductor Mg:$ZnCo_2O_4$ Thin-Film

  • Lee, Chil-Hyoung;Choi, Won-Kook;Lee, Jeon-Kook;Choi, Doo-Jin;Oh, Young-Jei
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.87-87
    • /
    • 2011
  • Oxide semiconductors are attractive materials for thin-film electronics and optoelectronics due to compatibility with synthesis on large-area, glass and flexible substrate. However, development of thin-film electronics has been hampered by the limited number of semiconducting oxides that are p-type. We report on the effect of the oxygen partial pressure ratio in the gas mixture on the electrical and optical properties of spinel Mg:$ZnCo_2O_4$ thin films deposited at room temperature using RF sputtering, that exhibit p-type conduction. The thin-films are deposited at room temperature in a background of oxygen using a polycrystalline Mg:$ZnCo_2O_4$ ablation target. The p-type conduction is confirmed by positive Seebeck coefficient and positive Hall coefficient. The electrical resistivity and carrier concentration in on dependent Mg:$ZnCo_2O_4$ thin films were found to be dependent on the oxygen partial pressure ratio. As a result, it is revealed that the Mg:$ZnCo_2O_4$ thin-films were greatly influenced on the electrical and optical properties by the oxygen partial pressure condition. The visible region of the spectrum of 36~85%, and hole mobility of 1.1~3.7 $cm^2$/Vs, were obtained.

  • PDF

PL characteristics of silicon-nanocrystals as a function of temperature (온도에 따른 실리콘 나노결정 PL 특성)

  • Kim, Kwang-Hee;Kim, Kwang-Il;Kwon, Young-Kyu;Lee, Yong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.93-93
    • /
    • 2003
  • Photoluminescence(PL) properties of Silicon nanocrystals (nc-Si) as a function of temperature is reported to consider the mechanism of PL. Nc-Si has been made by $Si^+$ ion-implantation into thermal $SiO_2$ and subsequent annealing. And after gold had been diffused at the same samples above, the resultant PL spectra has been compared to the PL spectra from the non-gold doped nc-Si. PL peak energy variation from nc-Si is same with the variation of energy bandgap of bulk silicon as temperature changes from 6 K to room temperature. This result may mean nc-Si is still indirect transition material like bulk silicon. Gold doped nc-Si reveals short peak wavelength of PL spectrum than gold undoped one. PL peak shift through gold doing process shows clearly the PL mechanism is not from defect or interface states. PL intensity increases from 6K to a certain temperature and then decrease to room temperature. This characteristic with temperature shows that phonon have a role for the luminescence as theory explains that electron and hole can be recombined radiatively by phonon's assist in nc-Si, which is almost impossible in bulk silicon. Therefore luminescence is observed in nc-Si constructed less than a few of unit cell and the peak energy of luminescence can be higher than the bulk bandgap energy by the bandgap widening effect occurs in nanostructure.

  • PDF

Investigation of an Arc-induced Long Period Fiber Grating Inscribed in a Photonic Crystal Fiber with Two Large Air Holes

  • Kim, Sun-Duck;Kim, Gil-Hwan;Hwang, Kyu-Jin;Lim, Sun-Do;Lee, Kwan-Il;Kim, Sang-Hyuck;Lee, Sang-Bae
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.428-433
    • /
    • 2009
  • A photonic crystal fiber with two large air holes outside the holey cladding region is fabricated to induce an effective long periodic grating (LPG) in the core by an electric arc discharge. We believe that the two large air holes lead to the asymmetric perturbation in the core under the electric arc discharge, thereby introducing the coupling to the first higher-order mode. The transmission characteristics of the PCF with the LPG for the external perturbation such as strain, curvature, and temperature are also investigated. It was found that the shift of resonance peak in the transmission spectrum depends on the bending direction. The curvature of 8.55 $m^{-1}$ results in the center wavelength shifts of 1.8, 4.3, and 11 nm for a vertical, diagonal, and horizontal direction of the curvature to the large air-hole alignment, respectively.

Organic-layer thickness dependent optical properties of top emission organic light-eitting diodes (전면 유기 발광 소자의 유기물층 두께 변화에 따른 광학적 특성)

  • An, Hui-Chul;Joo, Hyun-Woo;Na, Su-Hwan;Kim, Tae-Wan;Hong, Jin-Woong;Oh, Yong-Cheul;Song, Min-Joung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.413-414
    • /
    • 2008
  • We have studied an organic layer thickness dependent optical properties and microcavity effects for top-emission organic light-emitting diodes. Manufactured top emission device, structure is Al(100nm)ITPD(xnm)/$Alq_3$(ynm)/LiF(0.5nm)/Al(23nm). While a thickness of hole-transport layer of TPD was varied from 35 to 65nm, an emissive layer thickness of $Alq_3$ was varied from 50 to 100nm for two devices. A ratio of those two layers was kept to about 2:3. Variation of the layer thickness changes a traverse time of injected carriers across the organic layer, so that it may affect on the chance of probability of exciton formation. View-angle dependent emission spectra were measured for the optical measurements. Top-emission devices show that the emission peak wavelength shifts to longer wavelength as the organic layer thickness increases. For instance, it shifts from 490 to 555nm in the thickness range that we used. View-angle dependent emission spectra show that the emission intensity decreases as the view-angle increases. The organic layer thickness-dependent emission spectra show that the full width at half maximum decreases as the organic layer thickness increases. Top emission devices show that the full width at half maximum changes from 90 to 35nm as the organic layer thickness increases. In top-emission device, the microcavity effect is more vivid as the organic layer thickness increases.

  • PDF

Harmonized Non-linear Interaction Between Different Two Vortex Shedding Frequencies (서로 다른 두 개의 와류방출 주파수간의 비선형간섭)

  • Kim, Sang Il;Seung, Sam Sun;Lee, Seung-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.3
    • /
    • pp.211-217
    • /
    • 2014
  • This study analyzes the nonlinear interaction between two different vortex shedding frequencies from a cylinder with two diameters. In particular, two different vortex shedding frequencies are generated by preparing a cylinder having two diameters artificially. Flow velocity fluctuations behind the cylinder are measured three-dimensionally. Additionally, we fabricated a hole and placed a pressure transducer for measuring the pressure on the cylinder surface. The pressure signal from the pressure transducer is used as basic signal. A TSC(Trans Spectrum Coherence) is used for checking the strength of the nonlinear interaction between two different vortex shedding frequencies. As a result, the following are clarified: i) frequency distribution behind the cylinder, ii) three-dimensional flow state behind the cylinder through calculation of ensemble average, and iii) close relationship between the vertical vortex and change of low frequency by nonlinear interaction between two different vortex shedding frequencies from the cylinder with two diameters.

Thermoluminescence of Rb2LiCeCl6 Halide Scintillator (Rb2LiCeCl6 할라이드 섬광체의 열형광 특성)

  • Kim, Sunghwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1211-1215
    • /
    • 2014
  • We developed a new $Rb_2LiCeCl_6$ scintillator and determined the scintillation and thermoluminescence properties of the scintillator. The emission spectrum of $Rb_2LiCeCl$ is located in the range of 350 ~ 410 nm, peaking at 368 nm and 378 nm, due to the 4f ${\rightarrow}$ 5d transition of $Ce^{3+}$ ions. The fluorescence decay time of the crystal is composed two components. The fast component is 71 ns (85%) and the slow component is 405 ns (15%) of the crystal. The after-glow is caused by the electron and hole traps in the crystal lattice. We determined physical parameters of the traps in the crystal. The determined activation energy(E), kinetic order(m) and frequency factor(s) of the trap are 0.75 eV, 1.48 and $3.0{\times}10^8s^{-1}$, respectively.

Characterization of flow properties of pharmaceutical pellets in draft tube conical spout-fluid beds

  • Foroughi-Dahr, Mohammad;Sotudeh-Gharebagh, Rahmat;Mostoufi, Navid
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.274-281
    • /
    • 2018
  • Experimental studies of the hydrodynamic performance of the draft tube conical spout-fluid bed (DCSF) were conducted using pharmaceutical pellets. The experiments were carried out in a DCSF consisted of two sections: (a) a conical section with the cross section of $120mm{\times}250mm$ and the height of 270 mm, (b) a cylindrical section with the diameter of 250 mm and the height of 600 mm. The flow characteristics of solids were investigated with a high speed camera and a pezoresistive absolute pressure transducer simultaneously. These characteristics revealed different flow regimes in the DCSF: packed bed at low gas velocities, fluidized bed in draft tube at higher gas velocities until minimum spouting, and spouted bed. The stable spouting was identified by the presence of two dominant frequencies of the power spectrum density of pressure fluctuation signature: (i) the frequency band 6-9 Hz and (ii) the frequency band 12-15 Hz. The pressure drops across the draft tube as well as the annulus measured in order to better recognize the flow structure in the DCSF. It was observed that the pressure drop across the draft tube, the pressure drop across the annulus, and the minimum spouting velocity increase with the increase in the height of draft tube and distance of the entrainment zone, but with the decrease in the distributor hole pitch. Finally, this study provided novel insight into the hydrodynamic of DCSF, particularly minimum spouting and stable spouting in the DCSF which contains valuable information for process design and scale-up of spouted bed equipment.

Reliability Design Analysis for Underwater Buriend PBA Based on PoF (고장물리 기반 수중 매설형 PBA에 대한 신뢰성 설계 연구)

  • Kim, Ji-Young;Lee, Ki-Won;Yoon, Hong-Woo;Lee, Seung-Jin;Heo, Jun-Ki;Kwon, Hyeong-Ahn
    • Journal of Applied Reliability
    • /
    • v.17 no.4
    • /
    • pp.280-288
    • /
    • 2017
  • Purpose: PBA buried in underwater requires high reliability because of its mission critical characteristic and harsh operational environment during its life cycle. Therefore, various reliability improvement activities are necessary. The defect on PBA manufacturing process have been studied, as a result, many activities and standards have been presented. However, there are less studies regarding failure pattern on physical features based on design. In this paper, we studied a possible failure patten based on physical features that is related with manufacturing process of PBA. And reliability improvement design based on PoF (Physical of Failure) were intruduced in this paper. Methods: A reliability prediction simulation were performed on the components A and B of the H system using Sherlock Software which is a PoF commercial tool from DFR solution. Solder fatigue and PTH fatigue analysis based on thermal cycling profiles and random vibration was analyzed on three earthquake response spectrum. Result: It was validated that life time and reliability improvement design through solder fatigue and PTH fatigue analysis in case of component. For compoenet B, random vibration fatigue was additionally analyzed and validated reliability for earthquakes profile. Conclusion: In design stage prior to manufacturing, PoF can be analyzed, and it is possible to make a reliability improvement/validated design using design data. This study can be applied in every design step and contribute to make more stable development product.

Design of a scintillator-based prompt gamma camera for boron-neutron capture therapy: Comparison of SrI2 and GAGG using Monte-Carlo simulation

  • Kim, Minho;Hong, Bong Hwan;Cho, Ilsung;Park, Chawon;Min, Sun-Hong;Hwang, Won Taek;Lee, Wonho;Kim, Kyeong Min
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.626-636
    • /
    • 2021
  • Boron-neutron capture therapy (BNCT) is a cancer treatment method that exploits the high neutron reactivity of boron. Monitoring the prompt gamma rays (PGs) produced during neutron irradiation is essential for ensuring the accuracy and safety of BNCT. We investigate the imaging of PGs produced by the boron-neutron capture reaction through Monte Carlo simulations of a gamma camera with a SrI2 scintillator and parallel-hole collimator. GAGG scintillator is also used for a comparison. The simulations allow the shapes of the energy spectra, which exhibit a peak at 478 keV, to be determined along with the PG images from a boron-water phantom. It is found that increasing the size of the water phantom results in a greater number of image counts and lower contrast. Additionally, a higher septal penetration ratio results in poorer image quality, and a SrI2 scintillator results in higher image contrast. Thus, we can simulate the BNCT process and obtain an energy spectrum with a reasonable shape, as well as suitable PG images. Both GAGG and SrI2 crystals are suitable for PG imaging during BNCT. However, for higher imaging quality, SrI2 and a collimator with a lower septal penetration ratio should be utilized.

Photo-Transistors Based on Bulk-Heterojunction Organic Semiconductors for Underwater Visible-Light Communications (가시광 수중 무선통신을 위한 이종접합 유기물 반도체 기반 고감도 포토트랜지스터 연구)

  • Jeong-Min Lee;Sung Yong Seo;Young Soo Lim;Kang-Jun Baeg
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.143-150
    • /
    • 2023
  • Underwater wireless communication is a challenging issue for realizing the smart aqua-farm and various marine activities for exploring the ocean and environmental monitoring. In comparison to acoustic and radio frequency technologies, the visible light communication is the most promising method to transmit data with a higher speed in complex underwater environments. To send data at a speedier rate, high-performance photodetectors are essentially required to receive blue and/or cyan-blue light that are transmitted from the light sources in a light-fidelity (Li-Fi) system. Here, we fabricated high-performance organic phototransistors (OPTs) based on P-type donor polymer (PTO2) and N-type acceptor small molecule (IT-4F) blend semiconductors. Bulk-heterojunction (BHJ) PTO2:IT-4F photo-active layer has a broad absorption spectrum in the range of 450~550 nm wavelength. Solution-processed OPTs showed a high photo-responsivity >1,000 mA/W, a large photo-sensitivity >103, a fast response time, and reproducible light-On/Off switching characteristics even under a weak incident light. BHJ organic semiconductors absorbed photons and generated excitons, and efficiently dissociated to electron and hole carriers at the donor-acceptor interface. Printed and flexible OPTs can be widely used as Li-Fi receivers and image sensors for underwater communication and underwater internet of things (UIoTs).