• Title/Summary/Keyword: speckle

Search Result 486, Processing Time 0.027 seconds

A Response Time of the Nuclear Emergency Preparedness Robot based on the Gamma Ray Dose-Rate Constraints (감마선 선량율 제한조건에 따른 원자력 비상대응로봇의 대응시간)

  • Cho, JaiWan;Choi, Young Soo;Kim, TaeWon;Jeong, KyungMin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.807-810
    • /
    • 2014
  • 로봇 시스템의 제어 및 이를 이용한 환경 인식에는 많은 전자 광학 소자들이 사용되고 있다. 로봇 제어회로에 사용되고 있는 Si CMOS 공정의 CPU, ASIC, FPGA 소자는 고 선량의 감마선에 취약하다. 환경정보 수집용으로 로봇에 탑재되는 CMOS/CCD 카메라의 관측영상에는 고선량 감마선으로 인한 speckle (백색잡음, white noise) 들이 나타나며, 이들이 카메라의 관측성능을 저하시킨다. 후쿠시마 원자력발전소 사고와 같이 원자력시설에서 제어불능의 심각한 사고가 발생되면 고선량 감마선이 방출된다. 이러한 고선량 감마선방출은 사람에 의한 사고수습을 불가능하게 하며, 사고 수습을 위해서는 로봇의 활용이 불가피하다. 그러나, 방출되는 고선량 감마선의 세기(선량율)가 지나치게 높을 경우, 로봇 전자회로가 장애를 일으키기 때문에 로봇의 적절한 임무수행이 가능한 감마선 세기에 대한 고려가 필요하다. 본 논문에서는 고선량 감마선 환경하에서의 로봇 탑재 CCD/CMOS 카메라의 관측 성능을 고려하여 100 Gy/h 를 감마선 선량율 제한조건으로 설정한다. 그리고, 재 가동 승인심사를 받기 위해 일본의 원전 운영자들이 제시한 PWR (가압경수로) 원전의 중대사고 대책 적합성 평가문서에 나타난 노심용융개시 시점의 원자로 격납건물내 감마선 선량율 추이 계산결과를 활용하여 로봇의 대응시간을 계산하였다. 문서 (PDF) 에 표현된 감마선 선량율 추이 그래프를 영상 판독하여, 격납건물내 감마선 선량율이 100 Gy/h 제한조건에 도달하는 시간을 계산하였다. 이를 로봇의 대응시간으로 설정한다.

Topography, Vertical and Horizontal Deformation In the Sulzberger Ice Shelf, West Antarctica Using InSAR

  • Kwoun Oh-Ig;Baek Sangho;Lee Hyongki;Sohn Hong-Gyoo;Han Uk;Shum C. K.
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.1
    • /
    • pp.73-81
    • /
    • 2005
  • We construct improved geocentric digital elevation model (DEM), estimate tidal dynamics and ice stream velocity over Sulzberger Ice Shelf, West Antarctica employing differential interferograms from 12 ERS tandem mission Synthetic Aperture Radar (SAR) images acquired in austral fall of 1996. Ice, Cloud, and land Elevation Satellite (ICESat) laser altimetry profiles acquired in the same season as the SAR scenes in 2004 are used as ground control points (GCPs) for Interferometric SAR (InSAR) DEM generation. 20 additional ICESat profiles acquired in 2003-2004 are then used to assess the accuracy of the DEM. The vertical accuracy of the OEM is estimated by comparing elevations with laser altimetry data from ICESat. The mean height difference between all ICESat data and DEM is -0.57m with a standard deviation of 5.88m. We demonstrate that ICESat elevations can be successfully used as GCPs to improve the accuracy of an InSAR derived DEM. In addition, the magnitude and the direction of tidal changes estimated from interferogram are compared with those predicted tidal differences from four ocean tide models. Tidal deformation measured in InSAR is -16.7cm and it agrees well within 3cm with predicted ones from tide models. Lastly, ice surface velocity is estimated by combining speckle matching technique and InSAR line-of-sight measurement. This study shows that the maximum speed and mean speed are 509 m/yr and 131 m/yr, respectively. Our results can be useful for the mass balance study in this area and sea level change.

Stream flow estimation in small to large size streams using Sentinel-1 Synthetic Aperture Radar (SAR) data in Han River Basin, Korea

  • Ahmad, Waqas;Kim, Dongkyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.152-152
    • /
    • 2019
  • This study demonstrates a novel approach of remotely sensed estimates of stream flow at fifteen hydrological station in the Han River Basin, Korea. Multi-temporal data of the European Space Agency's Sentinel-1 SAR satellite from 19 January, 2015 to 25 August, 2018 is used to develop and validate the flow estimation model for each station. The flow estimation model is based on a power law relationship established between the remotely sensed surface area of water at a selected reach of the stream and the observed discharge. The satellite images were pre-processed for thermal noise, radiometric, speckle and terrain correction. The difference in SAR image brightness caused by the differences in SAR satellite look angle and atmospheric condition are corrected using the histogram matching technique. Selective area filtering is applied to identify the extent of the selected stream reach where the change in water surface area is highly sensitive to the change in stream discharge. Following this, an iterative procedure called the Optimum Threshold Classification Algorithm (OTC) is applied to the multi-temporal selective areas to extract a series of water surface areas. It is observed that the extracted water surface area and the stream discharge are related by the power law equation. A strong correlation coefficient ranging from 0.68 to 0.98 (mean=0.89) was observed for thirteen hydrological stations, while at two stations the relationship was highly affected by the hydraulic structures such as dam. It is further identified that the availability of remotely sensed data for a range of discharge conditions and the geometric properties of the selected stream reach such as the stream width and side slope influence the accuracy of the flow estimation model.

  • PDF

Deep Learning: High-quality Imaging through Multicore Fiber

  • Wu, Liqing;Zhao, Jun;Zhang, Minghai;Zhang, Yanzhu;Wang, Xiaoyan;Chen, Ziyang;Pu, Jixiong
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.286-292
    • /
    • 2020
  • Imaging through multicore fiber (MCF) is of great significance in the biomedical domain. Although several techniques have been developed to image an object from a signal passing through MCF, these methods are strongly dependent on the surroundings, such as vibration and the temperature fluctuation of the fiber's environment. In this paper, we apply a new, strong technique called deep learning to reconstruct the phase image through a MCF in which each core is multimode. To evaluate the network, we employ the binary cross-entropy as the loss function of a convolutional neural network (CNN) with improved U-net structure. The high-quality reconstruction of input objects upon spatial light modulation (SLM) can be realized from the speckle patterns of intensity that contain the information about the objects. Moreover, we study the effect of MCF length on image recovery. It is shown that the shorter the fiber, the better the imaging quality. Based on our findings, MCF may have applications in fields such as endoscopic imaging and optical communication.

A Study on the Quantitative Measurement of In-plane Displacement of Carbon Steel for Machine Structures according to Rolling Direction using a dual-beam Shear Interferometer (듀얼 빔 전단간섭계를 이용한 압연방향에 따른 기계구조용 탄소강의 면내 변위 정량적 측정에 대한 연구)

  • Kang, Chan-Geun;Kim, Sang Chae;Kim, Han-Sub;Lee, Hang-Seo;Jung, Hyun-il;Jung, Hyun-Chul;Song, Jae-Geun;Kim, Kyeong-suk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.39-48
    • /
    • 2021
  • In this paper, an in-plane deformation measuring system using a dual-beam shear interferometer was constructed to measure the in-plane deformation of the measuring object. The in-plane deformation of the object was quantitatively measured according to the load and surface treatment conditions of the object. We also verified the reliability of the proposed technique by simultaneously performing the technique with an electronic speckle pattern interferometry system (ESPI), which is another laser application measurement technology. Digital shearography directly measures the deformation gradient or strain components and has the advantages of being full-field, noncontact, highly sensitive, and robust. It offers a much higher measurement sensitivity compared with noncoherent measurement methods and is more robust and applicable to in-field tests.

Controlling the Intensity Distribution of Light at the Output of a Multimode Optical Fiber Using a Polar-coordinate-based Transmission-matrix Method (극좌표 기반 투과 매트릭스 방법을 이용한 다중모드 광섬유 출력단에서의 빛의 세기 분포 제어)

  • Park, Jaedeok;Jo, Jaepil;Yoon, Jonghee;Yeom, Dong-Il
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.6
    • /
    • pp.252-259
    • /
    • 2022
  • We have conducted a study to control the light-intensity distribution at the output end of a multimode optical fiber via estimating the transmission matrix. A circularly arranged Hadamard eigenmode phase distribution was implemented using a spatial light modulator, and the transmission matrix of a multimode optical fiber was experimentally obtained using a four-phase method. Based on the derived transmission matrix, the spatial phase distribution of light incident upon the optical fiber was adjusted via the spatial light modulator in advance, to focus the light at a desired position at the optical fiber output. The light could be focused with an intensity up to 359.6 times as high as that of the surrounding background signal at a specific position of the multimode fiber's output end, and the intensity of the focused beam was on average 104.6 times as large as that of the background signal, across the area of the multimode fiber's core.

High Noise Density Median Filter Method for Denoising Cancer Images Using Image Processing Techniques

  • Priyadharsini.M, Suriya;Sathiaseelan, J.G.R
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.308-318
    • /
    • 2022
  • Noise is a serious issue. While sending images via electronic communication, Impulse noise, which is created by unsteady voltage, is one of the most common noises in digital communication. During the acquisition process, pictures were collected. It is possible to obtain accurate diagnosis images by removing these noises without affecting the edges and tiny features. The New Average High Noise Density Median Filter. (HNDMF) was proposed in this paper, and it operates in two steps for each pixel. Filter can decide whether the test pixels is degraded by SPN. In the first stage, a detector identifies corrupted pixels, in the second stage, an algorithm replaced by noise free processed pixel, the New average suggested Filter produced for this window. The paper examines the performance of Gaussian Filter (GF), Adaptive Median Filter (AMF), and PHDNF. In this paper the comparison of known image denoising is discussed and a new decision based weighted median filter used to remove impulse noise. Using Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), and Structure Similarity Index Method (SSIM) metrics, the paper examines the performance of Gaussian Filter (GF), Adaptive Median Filter (AMF), and PHDNF. A detailed simulation process is performed to ensure the betterment of the presented model on the Mini-MIAS dataset. The obtained experimental values stated that the HNDMF model has reached to a better performance with the maximum picture quality. images affected by various amounts of pretend salt and paper noise, as well as speckle noise, are calculated and provided as experimental results. According to quality metrics, the HNDMF Method produces a superior result than the existing filter method. Accurately detect and replace salt and pepper noise pixel values with mean and median value in images. The proposed method is to improve the median filter with a significant change.

An intelligent method for pregnancy diagnosis in breeding sows according to ultrasonography algorithms

  • Jung-woo Chae;Yo-han Choi;Jeong-nam Lee;Hyun-ju Park;Yong-dae Jeong;Eun-seok Cho;Young-sin, Kim;Tae-kyeong Kim;Soo-jin Sa;Hyun-chong Cho
    • Journal of Animal Science and Technology
    • /
    • v.65 no.2
    • /
    • pp.365-376
    • /
    • 2023
  • Pig breeding management directly contributes to the profitability of pig farms, and pregnancy diagnosis is an important factor in breeding management. Therefore, the need to diagnose pregnancy in sows is emphasized, and various studies have been conducted in this area. We propose a computer-aided diagnosis system to assist livestock farmers to diagnose sow pregnancy through ultrasound. Methods for diagnosing pregnancy in sows through ultrasound include the Doppler method, which measures the heart rate and pulse status, and the echo method, which diagnoses by amplitude depth technique. We propose a method that uses deep learning algorithms on ultrasonography, which is part of the echo method. As deep learning-based classification algorithms, Inception-v4, Xception, and EfficientNetV2 were used and compared to find the optimal algorithm for pregnancy diagnosis in sows. Gaussian and speckle noises were added to the ultrasound images according to the characteristics of the ultrasonography, which is easily affected by noise from the surrounding environments. Both the original and noise added ultrasound images of sows were tested together to determine the suitability of the proposed method on farms. The pregnancy diagnosis performance on the original ultrasound images achieved 0.99 in accuracy in the highest case and on the ultrasound images with noises, the performance achieved 0.98 in accuracy. The diagnosis performance achieved 0.96 in accuracy even when the intensity of noise was strong, proving its robustness against noise.

A Study on Tensile Properties of Laminated Nanocomposite Fabricated by Selective Dip-Coating of Carbon Nanotubes (탄소나노튜브의 선택적 딥코팅을 이용해 제작된 적층 복합재료의 인장 물성에 대한 연구)

  • Kang Tae-June;Kim Dong-Iel;Huh Yong-Hak;Kim Yong-Hyup
    • Composites Research
    • /
    • v.19 no.3
    • /
    • pp.23-28
    • /
    • 2006
  • Carbon nanotubes reinforced copper matrix laminated nanocomposites were developed and the mechanical properties were evaluated by using micro-tensile testing system. Sandwich-type laminated structure constituted with carbon nanotube layers as a reinforcement and electroplated copper matrix were fabricated by a new processing approach based on selective dip-coating of carbon nanotubes. The mechanical properties of nanocomposites were improved due to an enhanced load sharing capacity of carbon nanotubes homogeneously distributed within the in-plane direction, as well as a bridging effect of carbon nanotubes along the out-of-plane direction between the upper and lower matrices. The universality of the layering approach is applicable to a wide range of functional materials, and here we demonstrate its potential use in reinforcing composite materials.

Suppression of side lobe using distance weight in spectrum of channel signal in medical ultrasound imaging system (의료용 초음파 영상 시스템에서 채널신호의 스펙트럼에서 거리 가중치를 이용한 부엽의 억제)

  • Yu Rim Lee;Mok Kun Jeong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.3
    • /
    • pp.203-213
    • /
    • 2023
  • In medical ultrasound imaging systems, Side lobes may appear if signals outside the imaging point are not completely removed during receive focusing. If the time signal of the side lobe overlaps with the time signal (main lobe) from the image point, it is difficult to completely remove it using filter processing in the time domain. However, In the receive focusing process, when time-channel signals are Fourier-transformed, the main lobe and side lobe signals are spatially separated in the spectral domain. Therefore, the side lobes can be suppressed by multiplying the image with magnitude weights, which are determined by the magnitudes of the main and side lobes calculated in the spectral domain. In addition, when the main lobe and the side lobe spectrum are adjacent, the distance weight was applied based on the distance between them. In a 5 MHz ultrasound imaging system using a 64-channel linear transducer, point reflector and speckle images with cysts of various brightness were synthesized and weights were applied to the ultrasound image. Using computer simulations, we confirmed that the side lobes were greatly reduced without affecting the spatial resolution in the point reflector image, and the contrast was significantly improved in the cyst image with computer simulations.