DOI QR코드

DOI QR Code

Topography, Vertical and Horizontal Deformation In the Sulzberger Ice Shelf, West Antarctica Using InSAR

  • Kwoun Oh-Ig (U.S. Geological Survey(USGS), EROS Data Center, SAIC) ;
  • Baek Sangho (Laboratory for Space Geodesy and Remote Sensing, The Ohio State University, The Department of Civil Engineering, Korea Military Academy, Republic of Korea) ;
  • Lee Hyongki (Laboratory for Space Geodesy and Remote Sensing, The Ohio State University) ;
  • Sohn Hong-Gyoo (School of Civil & Environmental Engineering, Yonsei University) ;
  • Han Uk (The Department of Environmental Science, Korea Military Academy) ;
  • Shum C. K. (Laboratory for Space Geodesy and Remote Sensing, The Ohio State University)
  • Published : 2005.02.01

Abstract

We construct improved geocentric digital elevation model (DEM), estimate tidal dynamics and ice stream velocity over Sulzberger Ice Shelf, West Antarctica employing differential interferograms from 12 ERS tandem mission Synthetic Aperture Radar (SAR) images acquired in austral fall of 1996. Ice, Cloud, and land Elevation Satellite (ICESat) laser altimetry profiles acquired in the same season as the SAR scenes in 2004 are used as ground control points (GCPs) for Interferometric SAR (InSAR) DEM generation. 20 additional ICESat profiles acquired in 2003-2004 are then used to assess the accuracy of the DEM. The vertical accuracy of the OEM is estimated by comparing elevations with laser altimetry data from ICESat. The mean height difference between all ICESat data and DEM is -0.57m with a standard deviation of 5.88m. We demonstrate that ICESat elevations can be successfully used as GCPs to improve the accuracy of an InSAR derived DEM. In addition, the magnitude and the direction of tidal changes estimated from interferogram are compared with those predicted tidal differences from four ocean tide models. Tidal deformation measured in InSAR is -16.7cm and it agrees well within 3cm with predicted ones from tide models. Lastly, ice surface velocity is estimated by combining speckle matching technique and InSAR line-of-sight measurement. This study shows that the maximum speed and mean speed are 509 m/yr and 131 m/yr, respectively. Our results can be useful for the mass balance study in this area and sea level change.

Keywords

References

  1. Braun, A., K. Cheng, B. Csatho, and C. Shum, 2004. ICESat laser altimetry in the Great Lakes, Proc. Institute of Navigation (ION) 60th Ann. Meeting, Dayton, Ohio, USA
  2. Egbert, G. D. and L. Erofeeva, 2002. Efficient inverse modeling of barotropic ocean tides, J. Atmos. Oceanic Tech., 19
  3. Fatland, D. R. and C. S. Lingle, 1998. Analysis of the 1993-95 Bering Glacier (Alaska) surge using differential SAR interferometry, J. Glaciol, 44(148): 532-546 https://doi.org/10.1017/S0022143000002057
  4. Goldstein, R. M., H. A. Zebker, and C. L. Werner, July- August 1988. Satellite radar interferometry: two-dimensional phase unwrapping, Radio Science, 23(4): 713-720 https://doi.org/10.1029/RS023i004p00713
  5. Hoen, E. and H. Zebker, 2000. Penetration depths inferred from interferometric volume decorrelation observed over the Greenland ice sheet, IEEE Trans, Geosci, Remote Sens., 38: 2571-2583 https://doi.org/10.1109/36.885204
  6. Ivins, E., X. Wu, C. Raymond, C. Yoder, and T. James, 2001. Temporal Geoid of a Rebounding Antarctica and Potential Measurement by the GRACE and GOCE Satellites, IAG Symposia vol. 123, GGG2000 (M. Sideris, ed.), Springer- Verlag, Berlin Heidelberg, pp. 361-366
  7. Kwok, R. and M. A. Fahnestock, 1996. Ice Sheet Motion and Topography from Radar Interferometry, IEEE Trans, Geosci, Remote Sens., 34(1): 189-200 https://doi.org/10.1109/36.481903
  8. Liu, H., K. Jezek, B. Li, and Z. Zhao, 2001. Radarsat Antarctic Mapping Project digital elevation model version 2. Boulder, CO: National Snow and Ice Data Center. Digital media
  9. Magruder, L. A., B. E. Schutz, and E. C. Silverberg, 2003. Laser pointing angle and time of measurement verification of the ICESat laser altimeter using a ground-based electro-optical detection system, J. Geodesy, 77(3-4): 148-154 https://doi.org/10.1007/s00190-003-0319-4
  10. Matsumoto, K., T. Takanezawa, and M. Ooe, 2000. Ocean Tide Models Developed by Assimilating TOPEX/POSEIDON Altimeter Data into Hydrodynamical Model: A Global Model and a Regional Model Around Japan, J. Oceanog., 56: 567-581 https://doi.org/10.1023/A:1011157212596
  11. Padman, L., H. A. Fricker, R. Coleman, S. Howard, and S. Erofeeva, 2000. A new tidal model for the Antarctic ice shelves and seas, Ann. Glaciol., 34: 247-254
  12. Ray, R. D., 1999. A Global Ocean Tide Model From TOPEX/POSEIDON Altimetry: GOT99.2, NASA Technical Memorandum 209478
  13. Rignot, E., 1998. Hinge-line migration of Peterman Gletscher, north Greenland, detected using satellite-radar interferometry, J. Glaciol., 44(148): 469-476 https://doi.org/10.1017/S0022143000001994
  14. Rignot, E., L. Padman, D. R. MacAyeal, and M. Schmeltz, 2000. Observation of ocean tides below the Filchner and Ronne Ice Shelves, Antarctica, using synthetic aperture radar interferometry: Comparison with tide model predictions, J. Geophys. Res., 105: 19,615- 19,630 https://doi.org/10.1029/1999JC000011
  15. Rignot, E., K. Echelmeyer, and W. Krabill, 2001. Penetration depth of interferometric syntheticaperture radar signals in snow and ice, Geophys. Res. Lett., 28(18): 3501-3504 https://doi.org/10.1029/2000GL012484
  16. Rufino, G., A. Moccia and S. Esposito, 1998. DEM generation by means of ERS tandem data, IEEE Trans. Geosci. Remote Sens., 36(6): 1,905- 1,912 https://doi.org/10.1109/36.729362
  17. Wingham, D., A. Ridout, R. Scharroo, A. Arthern, and C. Shum, 1998. Antarctic Elevation Change from 1992 to 1996, Science, 282: 456-458 https://doi.org/10.1126/science.282.5388.456
  18. Zebker, H. A., C. L. Werner, P. A. Rose, and S. Hensley, 1994. Accuracy of topographic maps derived from ERS-1 interferometric Radar, IEEE Trans. Geosci. Remote Sens., 32(4): 823- 836 https://doi.org/10.1109/36.298010
  19. Zwally, H. J. and M. B. Giovinetto, 2001. Balance Mass Flux and Ice Velocity Across the Equilibrium Line in Drainage Systems of Greenland, J. Geophys. Res. (Atmospheres), 106(D24): 33,717-33,728 https://doi.org/10.1029/2001JD900120
  20. Zwally, H. J. and C. Shuman, 2002. ICESat: Ice, Cloud, and land Elevation Satellite, Brochure FS- 2002-9-047-GSFC, 23 pp, NASA/ GSFC, Greenbelt, Maryland, USA