Browse > Article
http://dx.doi.org/10.7780/kjrs.2005.21.1.73

Topography, Vertical and Horizontal Deformation In the Sulzberger Ice Shelf, West Antarctica Using InSAR  

Kwoun Oh-Ig (U.S. Geological Survey(USGS), EROS Data Center, SAIC)
Baek Sangho (Laboratory for Space Geodesy and Remote Sensing, The Ohio State University, The Department of Civil Engineering, Korea Military Academy, Republic of Korea)
Lee Hyongki (Laboratory for Space Geodesy and Remote Sensing, The Ohio State University)
Sohn Hong-Gyoo (School of Civil & Environmental Engineering, Yonsei University)
Han Uk (The Department of Environmental Science, Korea Military Academy)
Shum C. K. (Laboratory for Space Geodesy and Remote Sensing, The Ohio State University)
Publication Information
Korean Journal of Remote Sensing / v.21, no.1, 2005 , pp. 73-81 More about this Journal
Abstract
We construct improved geocentric digital elevation model (DEM), estimate tidal dynamics and ice stream velocity over Sulzberger Ice Shelf, West Antarctica employing differential interferograms from 12 ERS tandem mission Synthetic Aperture Radar (SAR) images acquired in austral fall of 1996. Ice, Cloud, and land Elevation Satellite (ICESat) laser altimetry profiles acquired in the same season as the SAR scenes in 2004 are used as ground control points (GCPs) for Interferometric SAR (InSAR) DEM generation. 20 additional ICESat profiles acquired in 2003-2004 are then used to assess the accuracy of the DEM. The vertical accuracy of the OEM is estimated by comparing elevations with laser altimetry data from ICESat. The mean height difference between all ICESat data and DEM is -0.57m with a standard deviation of 5.88m. We demonstrate that ICESat elevations can be successfully used as GCPs to improve the accuracy of an InSAR derived DEM. In addition, the magnitude and the direction of tidal changes estimated from interferogram are compared with those predicted tidal differences from four ocean tide models. Tidal deformation measured in InSAR is -16.7cm and it agrees well within 3cm with predicted ones from tide models. Lastly, ice surface velocity is estimated by combining speckle matching technique and InSAR line-of-sight measurement. This study shows that the maximum speed and mean speed are 509 m/yr and 131 m/yr, respectively. Our results can be useful for the mass balance study in this area and sea level change.
Keywords
InSAR; ICESat Altimetry; GCP; DEM; Ice Velocity; Tidal Deformation.;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Egbert, G. D. and L. Erofeeva, 2002. Efficient inverse modeling of barotropic ocean tides, J. Atmos. Oceanic Tech., 19
2 Ivins, E., X. Wu, C. Raymond, C. Yoder, and T. James, 2001. Temporal Geoid of a Rebounding Antarctica and Potential Measurement by the GRACE and GOCE Satellites, IAG Symposia vol. 123, GGG2000 (M. Sideris, ed.), Springer- Verlag, Berlin Heidelberg, pp. 361-366
3 Matsumoto, K., T. Takanezawa, and M. Ooe, 2000. Ocean Tide Models Developed by Assimilating TOPEX/POSEIDON Altimeter Data into Hydrodynamical Model: A Global Model and a Regional Model Around Japan, J. Oceanog., 56: 567-581   DOI   ScienceOn
4 Ray, R. D., 1999. A Global Ocean Tide Model From TOPEX/POSEIDON Altimetry: GOT99.2, NASA Technical Memorandum 209478
5 Rignot, E., 1998. Hinge-line migration of Peterman Gletscher, north Greenland, detected using satellite-radar interferometry, J. Glaciol., 44(148): 469-476   DOI
6 Wingham, D., A. Ridout, R. Scharroo, A. Arthern, and C. Shum, 1998. Antarctic Elevation Change from 1992 to 1996, Science, 282: 456-458   DOI   PUBMED   ScienceOn
7 Zebker, H. A., C. L. Werner, P. A. Rose, and S. Hensley, 1994. Accuracy of topographic maps derived from ERS-1 interferometric Radar, IEEE Trans. Geosci. Remote Sens., 32(4): 823- 836   DOI   ScienceOn
8 Zwally, H. J. and C. Shuman, 2002. ICESat: Ice, Cloud, and land Elevation Satellite, Brochure FS- 2002-9-047-GSFC, 23 pp, NASA/ GSFC, Greenbelt, Maryland, USA
9 Magruder, L. A., B. E. Schutz, and E. C. Silverberg, 2003. Laser pointing angle and time of measurement verification of the ICESat laser altimeter using a ground-based electro-optical detection system, J. Geodesy, 77(3-4): 148-154   DOI   ScienceOn
10 Kwok, R. and M. A. Fahnestock, 1996. Ice Sheet Motion and Topography from Radar Interferometry, IEEE Trans, Geosci, Remote Sens., 34(1): 189-200   DOI   ScienceOn
11 Rignot, E., L. Padman, D. R. MacAyeal, and M. Schmeltz, 2000. Observation of ocean tides below the Filchner and Ronne Ice Shelves, Antarctica, using synthetic aperture radar interferometry: Comparison with tide model predictions, J. Geophys. Res., 105: 19,615- 19,630   DOI
12 Hoen, E. and H. Zebker, 2000. Penetration depths inferred from interferometric volume decorrelation observed over the Greenland ice sheet, IEEE Trans, Geosci, Remote Sens., 38: 2571-2583   DOI   ScienceOn
13 Zwally, H. J. and M. B. Giovinetto, 2001. Balance Mass Flux and Ice Velocity Across the Equilibrium Line in Drainage Systems of Greenland, J. Geophys. Res. (Atmospheres), 106(D24): 33,717-33,728   DOI
14 Rufino, G., A. Moccia and S. Esposito, 1998. DEM generation by means of ERS tandem data, IEEE Trans. Geosci. Remote Sens., 36(6): 1,905- 1,912   DOI   ScienceOn
15 Braun, A., K. Cheng, B. Csatho, and C. Shum, 2004. ICESat laser altimetry in the Great Lakes, Proc. Institute of Navigation (ION) 60th Ann. Meeting, Dayton, Ohio, USA
16 Padman, L., H. A. Fricker, R. Coleman, S. Howard, and S. Erofeeva, 2000. A new tidal model for the Antarctic ice shelves and seas, Ann. Glaciol., 34: 247-254
17 Goldstein, R. M., H. A. Zebker, and C. L. Werner, July- August 1988. Satellite radar interferometry: two-dimensional phase unwrapping, Radio Science, 23(4): 713-720   DOI   ScienceOn
18 Rignot, E., K. Echelmeyer, and W. Krabill, 2001. Penetration depth of interferometric syntheticaperture radar signals in snow and ice, Geophys. Res. Lett., 28(18): 3501-3504   DOI   ScienceOn
19 Liu, H., K. Jezek, B. Li, and Z. Zhao, 2001. Radarsat Antarctic Mapping Project digital elevation model version 2. Boulder, CO: National Snow and Ice Data Center. Digital media
20 Fatland, D. R. and C. S. Lingle, 1998. Analysis of the 1993-95 Bering Glacier (Alaska) surge using differential SAR interferometry, J. Glaciol, 44(148): 532-546   DOI