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I. INTRODUCTION

It is commonly known that multicore fiber (MCF) has 

attracted much interest in biological and medical imaging, 

optical communication, etc. [1-4]. Due to the existence of 

mode coupling and mode superposition, only a random 

phase speckle pattern can be obtained at the exit of the 

fiber after a coherent beam passes through the MCF, each 

core of which is multimode. Thus, this phenomenon 

greatly hinders imaging through the MCF. To reduce the 

loss of information and break the transmission limitation, 

each core of a MCF can be regarded as an information 

channel, which is similar to wavelength-division multi-

plexing (WDM) in optical communication. Controlling the 

imaging through MCF has been shown to have important 

applications in the field of biological imaging [5]. Many 

techniques have been implemented to enable imaging using 

MCF. For example, scanning endoscopy and wide-field 

imaging through MCF are successfully achieved by using 

speckle correlation and memory effect [6-8]. Based on the 

digital phase conjugation and memory effect of the MCF, 

researchers realized high-resolution imaging using focusing 

and scanning of a spot, without a long calibration procedure 

[9]. Wide-field endoscopic imaging is achieved using a 

transmission matrix without a scanner [3]. However, these 

techniques crucially depend on the stabilization of the 

external environment and MCF. Recently a new and 

strongly robust technique, deep learning, has solved this 

deficiency successfully in multimode fiber (MMF) and 

scattering media [10-17].

Deep learning has dramatically facilitated visual object 

recognition, object detection, and many other domains [18]. 

In 1991, artificial neural networks (ANNs) were proposed 

to recover the images transmitting through MMF [19]. It 
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has been demonstrated that a convolutional neural network 

(CNN) is capable of successfully solving the problem of 

optical imaging [20-24]. Based on a CNN, a common and 

stable network structure in deep learning, we can improve 

the network for our optical system to recover phase-type 

objects with high quality.

In this paper we use the state-of-the-art technique of 

deep learning to realize the reconstruction of input images 

with high quality through MCF, in which each core carries 

some information about the object, so as to increase the 

number of transmission channels. Moreover, we employ a 

database of 10,000 handwritten digits for training the 

network and 2000 digits for testing. Due to the sparse 

ground truth we use, the binary cross-entropy is adopted 

as the loss function in the optical system using the CNN. 

Accordingly, an efficient reconstruction effect is obtained 

in our experiment. Meanwhile, different lengths of fiber 

are used in our experiment, to show the influence of fiber 

length on image recovery and the evaluation function. The 

results in this paper may have applications in optical 

communication and endoscopic imaging, for example.

II. METHODS

The CNN structure we used is based on the “U-net” 

architecture [25] and a dense net [26], to improve compu-

tation speed. Meanwhile, the dense block can converge 

rapidly for better training efficiency. As shown in Fig. 1, 

the collected speckle patterns are processed with down-

sampling, to retain core information, by the convolutional 

encoder block, which includes four dense blocks connected 

by a max pooling layer. Moreover, the dense block is 

composed of various layers, with each layer including batch 

normalization (BN), a rectified linear element (ReLU) with 

nonlinear activation, and convolution with 16 filters (conv), 

as shown in detail in Fig. 1. After downsampling, the 

feature maps of deep semantic information are transferred 

into the path of the decoder, connected by the upsampling 

convolution layer consisting of four additional dense blocks 

(see the green block in Fig. 1). Furthermore, to improve the 

performance of the image reconstruction, a skip connection 

is introduced in the network. Importantly, we design the 

convolution layer of a single channel for the last layer to 

output the reconstructed image, and thus it is easy to 

observe the recovery effect. The details of the CNN are 

presented in Table 1.

FIG. 1. The structure of the U-net is consisted of the general encoder and decoder parts. The input speckle pattern is downsampled 

by encoder and then sent to decoder for reconstruction.

TABLE 1. The details of the network

Name Filter Output size

Input 256 × 256 × 1

Encoding

Convolution 3 × 3 Conv 256 × 256 × 64

Dense block [5 × 5 Conv] × 4 256 × 256 × 128

Convolution 3 × 3 Conv 128 × 128 × 128

Dense block [5 × 5 Conv] × 4 256 × 256 × 192

Convolution 3 × 3 Conv 64 × 64 × 256

Dense block [5 × 5 Conv] × 4 64 × 64 × 320

Convolution 3 × 3 Conv 32 × 32 × 512

Dense block [5 × 5 Conv] × 4 32 × 32 × 576

Bridge
Convolution 3 × 3 Conv 16 × 16 × 1024

Dense block [5 × 5 Conv] × 4 16 × 16 × 1088

Decoding

Convolution 3 × 3 Conv 32 × 32 × 512

Dense block [5 × 5 Conv] × 3 32 × 32 × 560

Convolution 3 × 3 Conv 64 × 64 × 256

Dense block [5 × 5 Conv] × 3 64 × 64 × 304

Convolution 3 × 3 Conv 128 × 128 × 128

Dense block [5 × 5 Conv] × 3 128 × 128 × 176

Convolution 3 × 3 Conv 256 × 256 × 64

Dense block [5 × 5 Conv] × 3 256 × 256 × 112

Convolution 3 × 3 Conv 256 × 256 × 32

Convolution 1 × 1 Conv 256 × 256 × 1
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Owing to the limitations of the computer, the batch size 

is chosen to be 16 for network training. In particular, the 

Adam optimizer [27] is used to optimize deep convolutional 

networks to minimize loss functions. The momentum para-

meter is chosen to be 0.99 and the rate of learning 0.0001. 

During the process of training for the network, the rate of 

learning is appropriately adjusted. We experimentally test 

multiple groups to find the number of iterations that can 

achieve optimal network performance. Generally, the mean 

squared error (MSE) can be used to evaluate loss functions, 

though it is not ideal for sparse images [28]. Therefore, we 

choose as an alternative the binary cross-entropy as the loss 

function in our paper, which is shown as follows [29]:

      
1

1
Loss= log 1 log 1

n

T P T P

i

y y y y
n



   , (1)

where yT represents the pixel of the true label image, yP is 

the pixel of the predicted image, and n is the total number 

of pixels. In the optical system, we propose the selective 

binary cross-entropy, calculated for each pixel, to estimate 

the network performance for CNN. Hence, the network 

has a strong capacity for reconstructing phase object input 

from intensity-type speckle output.

Deep learning usually is divided two learning approaches: 

supervised learning and unsupervised learning. We adopt 

the former to train a network with speckle pattern as input. 

A CNN with a convolution layer and a pooling layer is 

one type of network for deep learning. A CNN model is 

built to learn the mapping relationship between the speckle 

pattern detected at the exit of the fiber (Fig. 2(c)) and the 

ground-truth image. The ground-truth image (Fig. 2(a)) of 

the network is imposed on SLM. Figure 2(b) is the 

light-field pattern reflected from the SLM. We build the 

training network by collecting 10,000 speckle patterns, in 

which 8000 images are used as training set for the CNN, 

and the other 2000 images are used as testing set. The 

network is so strong that it can recover arbitrary, nontrained 

handwritten digits of different types.

III. RESULTS

The experimental setup is shown in Fig. 3. An infrared 

beam of wavelength 1028 nm is emitted from the laser 

(One five, 400 fs, 50 kHz). The lenses L1 and L2 are 

constructed to be a telescope system for expanding the 

light beam. The distance between L1 and L2 is 200 mm. 

The expanded light is split to the spatial light modulator 

(SLM, 1920 × 1080 pixels, Pluto-Vis, Holoeye) using a 

beam splitter (BS). The beam diameter of the light incident 

on the SLM is 7 mm, and the power is 30 mW. The SLM 

is phase-only, with a virtual phase object. The light beam 

carrying the information about the object is reflected from 

the SLM onto the proximal facet of the MCF (Thorlab, 

BF20LSMA02: each core’s diameter, 550 ± 19 µm; effective 

core diameter, 1750 µm; NA = 0.22) by using a 4f imaging 

system (L3 and O1). The MCF is coiled in circles 10 cm 

in diameter. To obtain the object information, another 4f 

system (O2 and L4) is employed at the exit of the fiber. 

The light from the seven cores of the MCF coherently 

superpose to produce the speckle [30], which is detected 

by a CCD (PIKE F421B, 2048 × 2048, AVT). The pixel 

size of the CCD is 7.5 µm.

The CNN is trained at Huaqiao University processing 

with a GPU (NVIDIA, RTX 2080 SUPER), using Keras/ 

Tensorflow. In our experiment, the ground-truth image of 

handwritten digit patterns is downloaded from the MNIST 

database [31]. The 12,000 handwritten digits imposed on 

the SLM are divided into the training and testing sets, 

which are 10,000 and 2000 in number respectively. It is 

worth noting that the number of digits for training the 

network can be chosen as 10,000 or 1000; the more digits 

we choose, the greater of the effect of generalization. In 

addition, to improve the speed of calculation, the speckle 

on the CCD and digits on the SLM are cropped to a 512 × 

512 pixel window. Next, the collected speckle images are 

resized to 256 × 256 using the nearest-neighbor method, 

before being processed by the CNN. In the far field we 

(a) (b) (c)

FIG. 2. (a) The phase image imposed on the SLM. (b) The 

light-field pattern reflected from the SLM. (c) The detected 

speckle pattern at the exit of the fiber.

FIG. 3. Experimental setup. The focal lengths of lenses L1, 

L2, L3, L4, and L5 are 50, 150, 100, 100, and 50 mm 

respectively. The length of the MCF is 1 m or 2 m. The 

diameter of the MCF (seven cores) is about 1.75 mm, and the 

diameter of each core is about 0.55 mm. O1 and O2 are 

objective lenses with numerical aperture (NA) of 0.25.
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can detect the coherent superposition of the seven light 

beams, so that each core’s signal containing information 

about the object can be mixed. Therefore, the trained net-

work of speckle patterns can be effectively reconstructed. 

For instance, as shown in Fig. 4, the letters H, Q, and U 

are generated on the SLM, and the corresponding speckle 

patterns after passing through 2 m of MCF are recorded 

by the CCD. Obviously, different object information is 

transmitted in the different modes of the MCF, so that the 

central intensity of speckle at the exit of the fiber is a 

little different for different objects on the SLM. For 

English letters, we need to train on a dataset based on the 

letter images before testing the speckle patterns of letters.

It has been shown that an amplitude object exhibits 

better reconstruction performance than a phase object, for 

the same training network [32]. Imaging nonsparse objects 

becomes more challenging, probably because the CNN is 

prone to reconstruct binary objects efficiently [20]. In our 

experiment, we impose a phase image on the SLM and 

obtain a high-quality reconstruction successfully, based on 

the improved CNN. A 4f system is placed to image the 

object onto the CCD. On account of the limitations of the 

computer, the speed of recording the output at the distal 

end of the fiber is 1 image per 1.5 s. Due to mode 

coupling, dispersion, and superposition of modes, the light 

field bearing the object information is scattered after 

passing through the MCF. However, the speckle acquired 

at the exit end of the MCF still contains the object 

information. To test the influence of the length of MCF 

on network reconstruction, we select 1-m and 2-m fibers 

in our experiment. Generally, speckle is sensitive to the 

external surroundings, such as temperature, mechanical 

vibrations etc. Hence, to better compare the effect of 

different fiber lengths on recovery, we set the same optical 

experimental conditions to train the identical network with 

two sets of speckle patterns as input, respectively. The 

recovery results for 1-m and 2-m MCFs with phase- 

modulated inputs are presented in Fig. 5. We can see that 

although the speckle intensity is not so uniform, the 

reconstructed image is still excellent.

To measure the results of reconstruction, an important 

parameter is introduced: the accuracy of the network, which 

is computed as percent mean square error. In addition, we 

also use the so-called Pearson correlation coefficient (PCC) 

between the ground-truth object and reconstructed image to 

evaluate the reconstruction effect. Notably, for each digit 

the fidelity of the 1-m fiber is mostly higher than that of 

the 2-m fiber, as shown in the Fig. 5. Furthermore, we 

plot a bar chart for both fibers with mean and standard 

deviation of PCC in Fig. 6, which reveals clearly the 

Pearson correlation coefficient for 1-m and 2-m fibers. 

This indicates that the longer the distance through which 

the light is transmitted in the fiber, the larger the loss of 

object information, and the more affected it is by the 

environment. The longer fiber is susceptible to environ-

mental influences, so the speckle pattern contains more 

noise, which affects image reconstruction. We also perform 

an experiment on the recovery of images of English letters 

passed through MCF. We find from our experimental 

FIG. 4. Test results for the letters H, Q, and U, and their 

corresponding speckle patterns, based on the CNN.

FIG. 5. Comparison of 1-m fiber to 2-m fiber, in the results of 

reconstruction using the U-net network.
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results that the accuracy of digit imaging is higher than that 

of letter imaging. The average accuracy of the reconstructed 

digits is greater than 0.930, while the accuracy of the 

reconstructed letters H, Q, and U is estimated to be 0.8560, 

0.8942, and 0.9176 respectively (see the reconstructed 

images in Fig. 4).

In the CNN model, accuracy and loss are regarded as 

significant parameters for judging the network system. The 

number of iterations will also affect performance. In this 

paper, the network is trained for 80 iterations, and good 

recovery is obtained. In Fig. 7, we present the results for 

the accuracy and loss as a function of epoch, for 1-m and 

2-m fibers respectively. Due to adjustment of the learning 

rate in the process of deep learning, sharp changes in the 

curves may occur, as seen in Fig. 7. Meanwhile, the 

accuracy of the training and validation are revealed in Figs. 

7(a) and 7(c). It is seen that the results for training are 

better than those for validation. With increasing epochs, the 

graph at first changes rapidly, and then slowly approaches 

a steady state. Similarly, the loss first decreases quickly, 

then tends to a minimum value. On the whole, our trained 

CNN is capable of achieving high-resolution reconstruction 

of an object’s image passing through MCF.

(a) (b)

(c) (d)

FIG. 7. Training and validation accuracy as a function of epoch, for the distal speckle intensity pattern of (a) 1-m fiber and (c) 2-m 

fiber; and loss as a function of epoch for the distal speckle intensity pattern of (b) 1-m fiber and (d) 2-m fiber.

FIG. 6. Bar chart showing the mean and standard deviation of 

the PCC of imaging reconstruction through MCF of lengths 

1 m and 2 m.
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IV. CONCLUSION

MCF plays an important role in endoscopic imaging and 

optical communication. The mode coupling and super-

position of modes in MCF impede high-quality imaging. 

In recent years, several techniques have been implemented 

in computational imaging when light passes through MCF, 

but these techniques mostly are sensitive to the external 

environment and variation of the MCF. In this paper we 

employed the strong technique of deep learning to realize 

high-quality imaging through a MCF with seven cores. 

Based on a CNN, we obtained high-quality image reconst-

ruction. It was shown that the deep learning technique was 

insensitive to variation of the MCF or the surroundings. 

The influence of the length of MCF on imaging quality 

was also studied, with the results demonstrating that the 

longer the length of MCF, the poorer the imaging quality. 

In these experiments we used accuracy and PCC to evaluate 

the performance of the network. The binary cross-entropy, 

which can efficiently estimate the reconstruction of a phase 

image, was used as the loss function for the optical system. 

It was estimated that the best accuracy for 1-m and 2-m 

fibers were 98.1% and 97.6% respectively. It was shown 

that the training set for our neural network was memorized 

very well. We envision that the technique and results of 

our experiments can be meaningful for biomedical imaging.
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