• Title/Summary/Keyword: specific power.

Search Result 2,652, Processing Time 0.031 seconds

Verification of Control System Algorithms for Compressed Gas Supply Facility in Launch Complex (발사대 고압가스공급설비 제어시스템 알고리즘 검증)

  • An, Jae-Chel;Moon, Kyung-Rok;Oh, Il-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.95-103
    • /
    • 2019
  • Control systems of compressed gas supply facility are responsible for storing and supplying compressed gases required for launch complex qualification test and launch operation. Most of the facilities that make up the launch complex require compressed gas for their operation. Therefore, such control systems should be developed and verified earlier rather than the other systems that constitute the launch complex. Each verification for hardware and software is performed separately. In particular, software verification of control algorithms loaded on the controller takes a lot of time and man power during the development period of the control system. Thus, specific test procedures and methods should be prepared in advance for efficient development. This paper introduces the configuration of a compressed gas supply facility and its control system with the verification procedure and results of major algorithms.

A Study on the NOx Reduction According to the Space Velocity Variation and Binder Content of Metal foam SCR Catalyst for Cogeneration Power Plant Application (열병합발전소 적용을 위한 Metal foam SCR촉매의 공간속도와 바인더 함량에 따른 NOx 저감에 관한 연구)

  • Na, Woo-Jin;Park, Hea-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.153-164
    • /
    • 2019
  • To develop a high performance SCR catalyst which has better specific surface area, lightness of weight and fast temperature response than those of existing commercial SCR catalyst, metal foam type SCR catalysts were prepared by washcoating with vanadium, tungsten and binder. The de-NOx performance test of the prepared catalysts was carried out on atmospheric micro-test unit at lab. scale according to space velocity variation and temperature change, and the characteristics of them were analyzed by Porosimeter, SEM(scanning electron microscope), EDX(energy dispersive x-ray spectrometer), ICP(inductively coupled plasma) and Stereomicroscope. The NOx reduction performance decreased as the space velocity increased and was found to be the best at 3.5 wt.% contents of the vanadium and tungsten. It was found that the larger amount of binder was added, the worse the NOx reduction performance was, which was considered to be that the number of active sites of the prepared catalyst surface was occupied by the binder. We found that the amount of binder to be added to prepare the catalyst should be properly controlled by the condition of coated catalyt surface.

Machine Learning Approach for Pattern Analysis of Energy Consumption in Factory (머신러닝 기법을 활용한 공장 에너지 사용량 데이터 분석)

  • Sung, Jong Hoon;Cho, Yeong Sik
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.4
    • /
    • pp.87-92
    • /
    • 2019
  • This paper describes the pattern analysis for data of the factory energy consumption by using machine learning method. While usual statistical methods or approaches require specific equations to represent the physical characteristics of the plant, machine learning based approach uses historical data and calculate the result effectively. Although rule-based approach calculates energy usage with the physical equations, it is hard to identify the exact equations that represent the factory's characteristics and hidden variables affecting the results. Whereas the machine learning approach is relatively useful to find the relations quickly between the data. The factory has several components directly affecting to the electricity consumption which are machines, light, computers and indoor systems like HVAC (heating, ventilation and air conditioning). The energy loads from those components are generated in real-time and these data can be shown in time-series. The various sensors were installed in the factory to construct the database by collecting the energy usage data from the components. After preliminary statistical analysis for data mining, time-series clustering techniques are applied to extract the energy load pattern. This research can attributes to develop Factory Energy Management System (FEMS).

The Influence of Empathy and Leadership on Happiness in Nursing College Students (간호대학생의 공감과 리더십이 행복감에 미치는 영향)

  • Cho, Young-Mi
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.10
    • /
    • pp.622-629
    • /
    • 2021
  • This study was attempted to find out the effect of empathy and leadership of nursing college students on happiness. For this study, from November to December 2020, 142 students were participated from C University in U City, using self reported questionnaire. Descriptive statistics, t-test, ANOVA, Scheffe test, Pearson's correlation analysis, and multiple regression analysis were used for data analysis. As results of this study, it was revealed that there was a significant positive correlation between the happiness of nursing students on empathy and leadership(r=.424, p<.001, r=.635, p<.001). Also, the factors affecting the happiness of nursing students were personality(β=-0.284, p<.001), health status(β=-0.375, p<.001, β=-0.178, p<.001), empathy(β=0.351, p<.001) and leadership(β=0.133, p=.039) with a total explanatory power of 58.1%. As the results of this study, in order to increase the happiness of nursing students, it is necessary to develop their empathy skills and leadership. The specific strategies are to develope and apply special programs to develop the empathy skills and leadership.

The Process of Identifying the Responsibility Party of Caused Delay Claim by Ambiguity of the Conditions of the Contract (계약 조항의 애매모호성에 의해서 발생되는 공기지연 클레임의 책임 당사자 확인 프로세스)

  • Lee, Chijoo;Kwan, Taewook;Koh, Hoonsuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.6
    • /
    • pp.527-535
    • /
    • 2020
  • This study analyzed main causes of claims in EPC/Turnkey projects. For this purpose, this study referred to the FIDIC silver book, which lists the international standard contract conditions for EPC/Turnkey projects. The most frequent cause of claim was delay. A process was then proposed to determine whether the owner or contractor was the responsible party when the delay claim occurred. The proposed process was for damages for delay which is the conditions of contract for indemnities against delay claim. The process was based on conditions of the contract of two previous EPC/Turnkey projects that were constructed in 2010, the FIDIC silver book, as well as the obligations of owner and contactors. The proposed process is applicable depending on the conditions of the contract and the owner's meaning. Furthermore, by identifying the responsible party, this study will contribute in identifying the possible claim types before concluding a contract and writing the specific contract.

The Development of Electromagnetic pulse Protection Capability in the Main System of a Tank Battalion (전차대대 주요체계의 EMP 방호능력 발전방안에 관한 연구)

  • Choi, Hokab;Han, Jaeduk;Son, Sangwoo;Kim, Sungkon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.623-631
    • /
    • 2020
  • An electromagnetic pulse (EMP) attack on a nuclear weapon or the airlift of an electronic bomb affects weapons systems, information devices, wired and wireless communication equipment, and power supply equipment. It can lead to confusion on the battlefield. The current standards for EMP protection when applied to the military are centered on fixed and mobile facilities and equipment. It is, however, important to study EMP protection for a single tactical unit centered on the weapon system. In this study, EMP protection standards were established for command and control, maneuvering and firepower systems vulnerable to EMPs, focusing on battle tanks with mobility, firepower, and shock force. Also, specific development plans for EMP protection capabilities are proposed, including the shielding and blocking of EMPs. Through the study, the Korean government intends to ensure a unit's command and control under an EMP attack as well as preserve the viability of a unit's personnel and guarantee the conditions for the execution of a mission.

Part-time Work in Netherlands: Facts and Policies (네델란드에서의 파트타임근로의 현황과 정책)

  • Cheon, Byung-You
    • Korean Journal of Labor Studies
    • /
    • v.17 no.1
    • /
    • pp.269-295
    • /
    • 2011
  • This paper is about the part-time work and related polices in Netherland, which increased the employment rate for the past 30 years with part-time job creation. Netherland has been successful in making part-time 'good' jobs. There were many factors which contributed to increaing part-time jobs such as market, institution, policies, and industrial relations. There was virtuous cycle between increase in the supply of female labor power and increase in the demand for part-time worker in the labor market. The policies were reinforced which protect part-time workers, introduced the incentive system which was favorable to part-time wokres, guaranteed the right to select working hours to workers. Particularly, the labor market, institutions and policies were created in the midst of the social dialogue. As the polder model has been persisted for almost 30 years, the switch to full-time work or long working-hour model would not be possible. As the poler model is a very specific model based on the Netherland's own social conditions, it is not easy to copy and transplant in other countries.

Bilataral Trade Balance between Korea and Her Trading Partners: Using Panel Approach (한국의 무역상대국간 무역수지와 환율간의 장기관계분석: 패널분석의 적용)

  • Kim, Joung-Gu
    • International Area Studies Review
    • /
    • v.14 no.1
    • /
    • pp.185-202
    • /
    • 2010
  • While it is often assumed that a country's trade balance will improve in the long-run if its currency is allowed to depreciate, this is not necessarily the case for specific industry. This paper is to examine the long-run relationships between trade balance and real exchange rate using bilateral data of SITC 10 Industry Classification for Korea vis-${\grave{a}}$-vis her trading partners Indonesia, India, China, Japan on a quarterly basis over the period of 1999Q1 to 2008Q4. I applied the recent panel cointegration technique to reduce the small sample problems and improving power performance of the relevant estimation and inference procedures. The results reveal evidence of the Marshall-Lerner Condition in Indonesia 2 industries, India 5 industries, Japanese 4 industries, Chinese 6 industries. Whole group's cointegration statistic of India, China, Japan was supported Marshall-Lerner Condition but Indonesia was rejected.

A study on the manufacturing of metal/plastic multi-components using the DSI molding (DSI 성형을 이용한 금속/플라스틱 복합 부품 제조에 관한 연구)

  • Ha, Seok-Jae;Cha, Baeg-Soon;Ko, Young-Bae
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.71-77
    • /
    • 2020
  • Various manufacturing technologies, including over-molding and insert-injection molding, are used to produce hybrid plastics and metals. However, there are disadvantages to these technologies, as they require several steps in manufacturing and are limited to what can be reasonably achieved within the complexities of part geometry. This study aims to determine a practical approach for producing metal/plastic hybrid components by combining plastic injection molding and metal die casting to create a new hybrid metal/plastic molding process. The integrated metal/plastic hybrid injection molding process developed in this study uses the proven method of multi-component technology as a basis to combine plastic injection molding with metal die casting into one integrated process. In this study, the electrical conductivity and ampacity were verified to qualify the new process for the production of parts used in electronic devices. The electrical conductivity was measured, contacting both sides of the test sample with constant pressure, and the resistivity was measured using a micro ohmmeter. Also, the specific conductivity was subsequently calculated from the resistivity and contact surface of the conductor path. The ampacity defines the maximum amount of current a conductive path can carry before sustaining immediate or progressive deterioration. The manufactured hybrid multi-components were loaded with increasing currents, while the temperature was recorded with an infrared camera. To compare the measured infrared images, an electro-thermal simulation was conducted using commercial CAE software to predict the maximum temperature of the power loaded parts. Overall, during the injection molding process, it was demonstrated that multifunctional parts can be produced for electric and electronic applications.

Anodically prepared TiO2 Micro and Nanostructures as Anode Materials for Lithium-ion Batteries (양극산화를 사용한 TiO2 마이크로/나노 구조체 제조 및 리튬 이온 전지 음극재로의 응용 연구)

  • Kim, Yong-Tae;Choi, Jinsub
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.243-252
    • /
    • 2021
  • With increasingly strict requirements for advanced energy storage devices in electric vehicles (EVs) and stationary energy storage systems (EES), the development of lithium-ion batteries (LIBs) with high power density and safety has become an urgent task. Because the performance of LIBs is determined primarily by the physicochemical characteristics of its electrode material, TiO2, owing to its excellent stability, high safety levels, and environmentally friendly properties, has received significant attention as an alternative material for the replacement of commercial carbon-based anode materials. In particular, self-organized TiO2 micro and nanostructures prepared by anodization have been intensively investigated as promising anode materials. In this review, the mechanism for the formation of anodic TiO2 nanotubes and microcones and the parameters that influence their morphology are described. Furthermore, recent developments in anodic TiO2-based composites as anode electrodes for LIBs to overcome the limitations of low conductivity and specific capacity are summarized.