Browse > Article
http://dx.doi.org/10.14478/ace.2021.1020

Anodically prepared TiO2 Micro and Nanostructures as Anode Materials for Lithium-ion Batteries  

Kim, Yong-Tae (Department of Chemistry and Chemical Engineering, Inha University)
Choi, Jinsub (Department of Chemistry and Chemical Engineering, Inha University)
Publication Information
Applied Chemistry for Engineering / v.32, no.3, 2021 , pp. 243-252 More about this Journal
Abstract
With increasingly strict requirements for advanced energy storage devices in electric vehicles (EVs) and stationary energy storage systems (EES), the development of lithium-ion batteries (LIBs) with high power density and safety has become an urgent task. Because the performance of LIBs is determined primarily by the physicochemical characteristics of its electrode material, TiO2, owing to its excellent stability, high safety levels, and environmentally friendly properties, has received significant attention as an alternative material for the replacement of commercial carbon-based anode materials. In particular, self-organized TiO2 micro and nanostructures prepared by anodization have been intensively investigated as promising anode materials. In this review, the mechanism for the formation of anodic TiO2 nanotubes and microcones and the parameters that influence their morphology are described. Furthermore, recent developments in anodic TiO2-based composites as anode electrodes for LIBs to overcome the limitations of low conductivity and specific capacity are summarized.
Keywords
Lithium-ion batteries; Anode; $TiO_2$; Nanotubes; Microcones;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Madian, A. Eychmuller, and L. Giebeler, Current advances in TiO2-based nanostructure electrodes for high performance lithium ion batteries, Batteries, 4, 7 (2018).   DOI
2 F. Dachille, P. Simons, and R. Roy, Pressure-temperature studies of anatase, brookite, rutile and TiO2-II, Am. Min., 53, 1929-1939 (1968).
3 R. van de Krol, A. Goossens, and J. Schoonman, Spatial extent of lithium intercalation in anatase TiO2, J. Phys. Chem. B, 103, 7151-7159 (1999).   DOI
4 H. Zhang and J. F. Banfield, Structural characteristics and mechanical and thermodynamic properties of nanocrystalline TiO2, Chem. Rev., 114, 9613-9644 (2014).   DOI
5 C. Wang, A. J. Appleby, and F. E. Little, Charge-discharge stability of graphite anodes for lithium-ion batteries, J. Electroanal. Chem., 497, 33-46 (2001).   DOI
6 Y. Wu, C. Jiang, C. Wan, and E. Tsuchida, Effects of catalytic oxidation on the electrochemical performance of common natural graphite as an anode material for lithium ion batteries, Electrochem. Commun., 2, 272-275 (2000).   DOI
7 C. Uhlmann, J. Illig, M. Ender, R. Schuster, and E. Ivers-Tiffee, In situ detection of lithium metal plating on graphite in experimental cells, J. Power Sources, 279, 428-438 (2015).   DOI
8 D. P. Opra, S. V. Gnedenkov, and S. L. Sinebryukhov, Recent efforts in design of TiO2 (B) anodes for high-rate lithium-ion batteries: A review, J. Power Sources, 442, 227225 (2019).   DOI
9 B. Heo, J. Ha, Y.-T. Kim, and J. Choi, 10 ㎛-thick MoO3-coated TiO2 nanotubes as a volume expansion regulated binder-free anode for lithium ion batteries, J. Ind. Eng. Chem., 96, 364-370 (2021).   DOI
10 C. Huang, S.-X. Zhao, H. Peng, Y.-H. Lin, C.-W. Nan, and G.-Z. Cao, Hierarchical porous Li4Ti5O12-TiO2 composite anode materials with pseudocapacitive effect for high-rate and low-temperature applications, J. Mater. Chem. A, 6, 14339-14351 (2018).   DOI
11 Y. Wang, Y.-x. Zhang, W.-J. Yang, S. Jiang, X.-w. Hou, R. Guo, W. Liu, P. Huang, J. Lu, and H.-t. Gu, Enhanced rate performance of Li4Ti4O12 anode for advanced lithium batteries, J. Electrochem. Soc., 166, A5014 (2018).   DOI
12 Z. F. Yin, L. Wu, H. G. Yang, and Y. H. Su, Recent progress in biomedical applications of titanium dioxide, PCCP, 15, 4844-4858 (2013).   DOI
13 B. Scrosati and J. Garche, Lithium batteries: Status, prospects and future, J. Power Sources, 195, 2419-2430 (2010).   DOI
14 X. Zuo, J. Zhu, P. Muller-Buschbaum and Y.-J. Cheng, Silicon based lithium-ion battery anodes: A chronicle perspective review, Nano Energy, 31, 113-143 (2017).   DOI
15 M. S. Whittingham, Lithium batteries and cathode materials, Chem. Rev., 104, 4271-4302 (2004).   DOI
16 J. W. Fergus, Recent developments in cathode materials for lithium ion batteries, J. Power Sources, 195, 939-954 (2010).   DOI
17 J. Islam, F. I. Chowdhury, J. Uddin, R. Amin, and J. Uddin, Review on carbonaceous materials and metal composites in deformable electrodes for flexible lithium-ion batteries, RSC Adv., 11, 5958-5992 (2021).   DOI
18 Z. Weng, H. Guo, X. Liu, S. Wu, K. Yeung, and P.K. Chu, Nanostructured TiO2 for energy conversion and storage, RSC Adv., 3, 24758-24775 (2013).   DOI
19 C. Zhang, S. Liu, Y. Qi, F. Cui, and X. Yang, Conformal carbon coated TiO2 aerogel as superior anode for lithium-ion batteries, Chem. Eng. J., 351, 825-831 (2018).   DOI
20 R. Menendez, P. Alvarez, C. Botas, F. Nacimiento, R. Alcantara, J. L. Tirado, and G. F. Ortiz, Self-organized amorphous titania nanotubes with deposited graphene film like a new heterostructured electrode for lithium ion batteries, J. Power Sources, 248, 886-893 (2014).   DOI
21 J. Macak, F. Schmidt-Stein, and P. Schmuki, Efficient oxygen reduction on layers of ordered TiO2 nanotubes loaded with Au nanoparticles, Electrochem. Commun., 9, 1783-1787 (2007).   DOI
22 L. B. Arruda, C. M. Santos, M. O. Orlandi, W. H. Schreiner, and P. N. Lisboa-Filho, Formation and evolution of TiO2 nanotubes in alkaline synthesis, Ceram. Int., 41, 2884-2891 (2015).   DOI
23 C. Bae, H. Yoo, S. Kim, K. Lee, J. Kim, M. M. Sung and H. Shin, Template-directed synthesis of oxide nanotubes: Fabrication, characterization, and applications, Chem. Mater., 20, 756-767 (2008).   DOI
24 M. G. Choi, Y.-G. Lee, S.-W. Song, and K. M. Kim, Lithium-ion battery anode properties of TiO2 nanotubes prepared by the hydrothermal synthesis of mixed (anatase and rutile) particles, Electrochim. Acta, 55, 5975-5983 (2010).   DOI
25 S. Ribbens, V. Meynen, G. Van Tendeloo, X. Ke, M. Mertens, B. Maes, P. Cool, and E. Vansant, Development of photocatalytic efficient Ti-based nanotubes and nanoribbons by conventional and microwave assisted synthesis strategies, Microporous Mesoporous Mater., 114, 401-409 (2008).   DOI
26 D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. Singh, Z. Chen, and E. C. Dickey, Titanium oxide nanotube arrays prepared by anodic oxidation, J. Mater. Res., 16, 3331-3334 (2001).   DOI
27 Y. Li, Q. Ma, J. Han, L. Ji, J. Wang, J. Chen, and Y. Wang, Controllable preparation, growth mechanism and the properties research of TiO2 nanotube arrays, Appl. Surf. Sci., 297, 103-108 (2014).   DOI
28 H. Yoo, M. Kim, Y.-T. Kim, K. Lee, and J. Choi, Catalyst-doped anodic TiO2 nanotubes: Binder-free electrodes for (photo) electrochemical reactions, Catalysts, 8, 555 (2018).   DOI
29 S. Sreekantan, K. A. Saharudin, and L. C. Wei, Formation of TiO2 nanotubes via anodization and potential applications for photo-catalysts, biomedical materials, and photoelectrochemical cell, IOP Conf. Ser. Mater. Sci. Eng., IOP Publishing, pp. 012002 (2011).
30 M. Lohrengel, Thin anodic oxide layers on aluminium and other valve metals: High field regime, Mater. Sci. Eng. R Rep., 11, 243-294 (1993).   DOI
31 G. Thompson, Porous anodic alumina: Fabrication, characterization and applications, Thin Solid Films, 297, 192-201 (1997).   DOI
32 S. Berger, S. P. Albu, F. Schmidt-Stein, H. Hildebrand, P. Schmuki, J. S. Hammond, D. F. Paul, and S. Reichlmaier, The origin for tubular growth of TiO2 nanotubes: A fluoride rich layer between tube-walls, Surf. Sci., 605, L57-L60 (2011).   DOI
33 S. Garcia-Vergara, P. Skeldon, G. Thompson, and H. Habazaki, A flow model of porous anodic film growth on aluminium, Electrochim. Acta, 52, 681-687 (2006).   DOI
34 J. M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, and P. Schmuki, Smooth anodic TiO2 nanotubes, Angew. Chem. Int. Ed., 44, 7463-7465 (2005).   DOI
35 T. Froschl, U. Hormann, P. Kubiak, G. Kucerova, M. Pfanzelt, C. K. Weiss, R. Behm, N. Husing, U. Kaiser, and K. Landfester, High surface area crystalline titanium dioxide: Potential and limits in electrochemical energy storage and catalysis, Chem. Soc. Rev., 41, 5313-5360 (2012).   DOI
36 R. Kirchgeorg, M. Kallert, N. Liu, R. Hahn, M. S. Killian, and P. Schmuki, Key factors for an improved lithium ion storage capacity of anodic TiO2 nanotubes, Electrochim. Acta, 198, 56-65 (2016).   DOI
37 H.-T. Fang, M. Liu, D.-W. Wang, T. Sun, D.-S. Guan, F. Li, J. Zhou, T.-K. Sham, and H.-M. Cheng, Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays, Nanotechnology, 20, 225701 (2009).   DOI
38 M. Wagemaker, W. J. Borghols, and F. M. Mulder, Large impact of particle size on insertion reactions. A case for anatase LixTiO2, J. Am. Chem. Soc., 129, 4323-4327 (2007).   DOI
39 S. Ivanov, L. Cheng, H. Wulfmeier, D. Albrecht, H. Fritze, and A. Bund, Electrochemical behavior of anodically obtained titania nanotubes in organic carbonate and ionic liquid based Li ion containing electrolytes, Electrochim. Acta, 104, 228-235 (2013).   DOI
40 W.-H. Ryu, D.-H. Nam, Y.-S. Ko, R.-H. Kim, and H.-S. Kwon, Electrochemical performance of a smooth and highly ordered TiO2 nanotube electrode for Li-ion batteries, Electrochim. Acta, 61, 19-24 (2012).   DOI
41 J. Gao, G. Qiu, H. Li, M. Li, C. Li, L. Qian, and B. Yang, Boron-doped graphene/TiO2 nanotube-based aqueous lithium ion capacitors with high energy density, Electrochim. Acta, 329, 135175 (2020).   DOI
42 N. y. Kim, G. Lee, and J. Choi, Fast-charging and high volumetric capacity anode based on Co3O4/CuO@ TiO2 composites for lithium-ion batteries, Chem. Eur. J., 24, 19045-19052 (2018).   DOI
43 D. Kim, K. Lee, P. Roy, B. I. Birajdar, E. Spiecker, and P. Schmuki, Formation of a non-thickness-limited titanium dioxide mesosponge and its use in dye-sensitized solar cells, Angew. Chem., 121, 9490-9493 (2009).   DOI
44 V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M.-Y. Perrin, and M. Aucouturier, Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy, Surf. Interface Anal., 27, 629-637 (1999).   DOI
45 O. Rhee, G. Lee, and J. Choi, Highly ordered TiO2 microcones with high rate performance for enhanced lithium-ion storage, ACS Appl. Mater. Interfaces, 8, 14558-14563 (2016).   DOI
46 J. Park and J. Choi, Formation of well dispersed TiO2 microcones; the 20% surface occupation, Appl. Surf. Sci., 448, 212-218 (2018).   DOI
47 A. Jaroenworaluck, D. Regonini, C. R. Bowen, R. Stevens, and D. Allsopp, Macro, micro and nanostructure of TiO2 anodised films prepared in a fluorine-containing electrolyte, J. Mater. Sci., 42, 6729-6734 (2007).   DOI
48 S. Wang, P.-K. Lee, X. Yang, A. L. Rogach, A. R. Armstrong, and Y. Denis, Polyimide-cellulose interaction in Sb anode enables fast charging lithium-ion battery application, Mater. Today Energy, 9, 295-302 (2018).   DOI
49 J. Park, G. Lee, and J. Choi, Key anodization factors for determining the formation of TiO2 microcones vs nanotubes, J. Electrochem. Soc., 164, D640 (2017).   DOI
50 H. Tsuchiya, J. M. Macak, I. Sieber, and P. Schmuki, Self-organized high-aspect-ratio nanoporous zirconium oxides prepared by electrochemical anodization, Small, 1, 722-725 (2005).   DOI
51 D.-J. Yang, H.-G. Kim, S.-J. Cho, and W.-Y. Choi, Thickness-conversion ratio from titanium to TiO2 nanotube fabricated by anodization method, Mater. Lett., 62, 775-779 (2008).   DOI
52 K. Lee, A. Mazare, and P. Schmuki, One-dimensional titanium dioxide nanomaterials: nanotubes, Chem. Rev., 114, 9385-9454 (2014).   DOI
53 H. Tsuchiya, J. M. Macak, L. Taveira, E. Balaur, A. Ghicov, K. Sirotna, and P. Schmuki, Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes, Electrochem. Commun., 7, 576-580 (2005).   DOI
54 H. Tsuchiya, J. M. Macak, A. Ghicov, L. Taveira, and P. Schmuki, Self-organized porous TiO2 and ZrO2 produced by anodization, Corros. Sci., 47, 3324-3335 (2005).   DOI
55 D. Regonini, C. R. Bowen, A. Jaroenworaluck, and R. Stevens, A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes, Mater. Sci. Eng. R Rep., 74, 377-406 (2013).   DOI
56 D. Kowalski, D. Kim, and P. Schmuki, TiO2 nanotubes, nanochannels and mesosponge: Self-organized formation and applications, Nano Today, 8, 235-264 (2013).   DOI
57 J. M. Macak, H. Tsuchiya, and P. Schmuki, High-aspect-ratio TiO2 nanotubes by anodization of titanium, Angew. Chem. Int. Ed., 44, 2100-2102 (2005).   DOI
58 K. Indira, U.K. Mudali, T. Nishimura, and N. Rajendran, A review on TiO2 nanotubes: Influence of anodization parameters, formation mechanism, properties, corrosion behavior, and biomedical applications, J. Bio. Tribocorros., 1, 1-22 (2015).
59 H. Tsuchiya, J. M. Macak, A. Ghicov, A. S. Rader, L. Taveira, and P. Schmuki, Characterization of electronic properties of TiO2 nanotube films, Corros. Sci., 49, 203-210 (2007).   DOI
60 H. Han, T. Song, E.-K. Lee, A. Devadoss, Y. Jeon, J. Ha, Y.-C. Chung, Y.-M. Choi, Y.-G. Jung, and U. Paik, Dominant factors governing the rate capability of a TiO2 nanotube anode for high power lithium ion batteries, ACS Nano, 6, 8308-8315 (2012).   DOI
61 A. Yerokhin, L. Snizhko, N. Gurevina, A. Leyland, A. Pilkington, and A. Matthews, Discharge characterization in plasma electrolytic oxidation of aluminium, J. Phys. D: Appl. Phys., 36, 2110-2120 (2003).   DOI
62 Y. T. Kim, J. H. Youk, and J. Choi, Inverse-direction growth of TiO2 microcones by subsequent anodization in HClO4 for increased performance of lithium-ion batteries, ChemElectroChem, 7, 1248-1255 (2020).   DOI
63 J. Park, S. Kim, G. Lee, and J. Choi, RGO-coated TiO2 microcones for high-rate lithium-ion batteries, ACS Omega, 3, 10205-10210 (2018).   DOI
64 H. Yoo, G. Lee, and J. Choi, Binder-free SnO2-TiO2 composite anode with high durability for lithium-ion batteries, RSC Adv., 9, 6589-6595 (2019).   DOI
65 L. Snizhko, A. Yerokhin, A. Pilkington, N. Gurevina, D. Misnyankin, A. Leyland, and A. Matthews, Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions, Electrochim. Acta, 49, 2085-2095 (2004).   DOI
66 G. Lee, S. Kim, S. Kim, and J. Choi, SiO2/TiO2 composite film for high capacity and excellent cycling stability in lithium-ion battery anodes, Adv. Funct. Mater., 27, 1703538 (2017).   DOI
67 J. Wu, X. He, G. Li, J. Deng, L. Chen, W. Xue, and D. Li, Rapid construction of TiO2/SiO2 composite film on Ti foil as lithium-ion battery anode by plasma discharge in solution, Appl. Phys. Lett., 114, 043903 (2019).   DOI
68 D. Li, D. Chen, J. Wang, and P. Liang, Effect of acid solution, fluoride ions, anodic potential and time on the microstructure and electronic properties of self-ordered TiO2 nanotube arrays, Electrochim. Acta, 207, 152-163 (2016).   DOI