• Title/Summary/Keyword: specific plant

Search Result 2,636, Processing Time 0.028 seconds

Requirement Analysis and Conceptual Design for a Cybrid Virtual Plant System (Cybrid 가상플랜트 시스템 요구사항 분석과 개념적 설계)

  • Lee, Jae Hyun;Suh, Hyo Won
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.4
    • /
    • pp.401-411
    • /
    • 2015
  • Cybrid virtual plant concept is defined as a cyber plant mimicking a physical plant by using plant engineering data and sensor data coming from sensors attached to facilities of the physical plant. Cybrid virtual plant is a new concept for plant industry so that plant managers and operators' requirements need to be captured for systematic application of the concept to the plant industry. The paper proposed an architecture of the cybrid virtual plant, and provided requirement analysis results for a specific plant company. A database, named smart-cube repository, for the proposed cybrid virtual plant is also proposed and its conceptual data structure is described.

Race- and Isolate-specific Molecular Marker Development through Genome-Realignment Enables Detection of Korean Plasmodiophora brassicae Isolates, Causal agents of Clubroot Disease

  • Jeong, Ji -Yun;Robin, Arif Hasan Khan;Natarajan, Sathishkumar;Laila, Rawnak;Kim, Hoy-Taek;Park, Jong-In;Nou, Ill-Sup
    • The Plant Pathology Journal
    • /
    • v.34 no.6
    • /
    • pp.506-513
    • /
    • 2018
  • Clubroot is one of the most economically important diseases of the Brassicaceae family. Clubroot disease is caused by the obligate parasite Plasmodiophora brassicae, which is difficult to study because it is nonculturable in the laboratory and its races are genetically variable worldwide. In Korea, there are at least five races that belongs to four pathotype groups. A recent study conducted in Korea attempted to develop molecular markers based on ribosomal DNA polymorphism to detect P. brassicae isolates, but none of those markers was either race-specific or pathotype-specific. Our current study aimed to develop race- and isolate-specific markers by exploiting genomic sequence variations. A total of 119 markers were developed based on unique variation exists in genomic sequences of each of the races. Only 12 markers were able to detect P. brassicae strains of each isolate or race. Ycheon14 markers was specific to isolates of race 2, Yeoncheon and Hoengseong. Ycheon9 and Ycheon10 markers were specific to Yeoncheon isolate (race 2, pathotype 3), ZJ1-3, ZJ1-4 and ZJ1-5 markers were specific to Haenam2 (race 4) isolate, ZJ1-35, ZJ1-40, ZJ1-41 and ZJ1-49 markers were specific to Hoengseong isolate and ZJ1-56 and ZJ1-64 markers were specific to Pyeongchang isolate (race 4, pathotype 3). The PCR-based sequence characterized amplified region (SCAR) markers developed in this study are able to detect five Korean isolates of P. brassicae. These markers can be utilized in identifying four Korean P. brassicae isolates from different regions. Additional effort is required to develop race- and isolate-specific markers for the remaining Korean isolates.

A Real-Time PCR Assay for the Quantitative Detection of Ralstonia solanacearum in Horticultural Soil and Plant Tissues

  • Chen, Yun;Zhang, Wen-Zhi;Liu, Xin;Ma, Zhong-Hua;Li, Bo;Allen, Caitilyn;Guo, Jian-Hua
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.193-201
    • /
    • 2010
  • A specific and rapid real-time PCR assay for detecting Ralstonia solanacearum in horticultural soil and plant tissues was developed in this study. The specific primers RSF/RSR were designed based on the upstream region of the UDP-3-O-acyl-GlcNAc deacetylase gene from R. solanacearum, and a PCR product of 159 bp was amplified specifically from 28 strains of R. solanacearum, which represent all genetically diverse AluI types and all 6 biovars, but not from any other nontarget species. The detection limit of $10^2\;CFU/g$ tomato stem and horticultural soil was achieved in this real-time PCR assay. The high sensitivity and specificity observed with field samples as well as with artificially infected samples suggested that this method might be a useful tool for detection and quantification of R. solanacearum in precise forecast and diagnosis.

Tissue-specific systemic responses of the wild tobacco Nicotiana attenuata against stem-boring herbivore attack

  • Lee, Gisuk;Joo, Youngsung;Baldwin, Ian T.;Kim, Sang-Gyu
    • Journal of Ecology and Environment
    • /
    • v.45 no.3
    • /
    • pp.143-151
    • /
    • 2021
  • Background: Plants are able to optimize defense responses induced by various herbivores, which have different feeding strategies. Local and systemic responses within a plant after herbivory are essential to modulate herbivore-specific plant responses. For instance, leaf-chewing herbivores elicit jasmonic acid signaling, which result in the inductions of toxic chemicals in the attacked leaf (tissue-specific responses) and also in the other unattacked parts of the plant (systemic responses). Root herbivory induces toxic metabolites in the attacked root and alters the levels of transcripts and metabolites in the unattacked shoot. However, we have little knowledge of the local and systemic responses against stem-boring herbivores. In this study, we examined the systemic changes in metabolites in the wild tobacco Nicotiana attenuata, when the stem-boring herbivore Trichobaris mucorea attacks. Results: To investigate the systemic responses of T. mucorea attacks, we measured the levels of jasmonic acid (JA), JA-dependent secondary metabolites, soluble sugars, and free amino acids in 7 distinct tissues of N. attenuata: leaf lamina with epidermis (LLE), leaf midrib (LM), stem epidermis (SE), stem pith (SP), stem vascular bundle (SV), root cortex with epidermis (RCE), and root vascular bundle (RV). The levels of JA were increased in all root tissues and in LM by T. mucorea attacks. The levels of chlorogenic acids (CGAs) and nicotine were increased in all stem tissues by T. mucorea. However, CGA was systematically induced in LM, and nicotine was systematically induced in LM and RCE. We further tested the resource allocation by measuring soluble sugars and free amino acids in plant tissues. T. mucorea attacks increased the level of free amino acids in all tissues except in LLE. The levels of soluble sugars were significantly decreased in SE and SP, but increased in RV. Conclusions: The results reveal that plants have local- and systemic-specific responses in response to attack from a stem-boring herbivore. Interestingly, the level of induced secondary metabolites was not consistent with the systemic inductions of JA. Spatiotemporal resolution of plant defense responses against stem herbivory will be required to understand how a plant copes with attack from herbivores from different feeding guilds.

The use of SlAdh2 promoter as a novel fruit-specific promoter in transgenic tomato

  • Chung, Mi-Young;Naing, Aung Htay;Vrebalov, Julia;Shanmugam, Ashokraj;Lee, Do-Jin;Park, In Hwan;Kim, Chang Kil;Giovannon, James
    • Journal of Plant Biotechnology
    • /
    • v.47 no.2
    • /
    • pp.172-178
    • /
    • 2020
  • Fruit-specific promoters play an important role in the improvement of traits, such as fruit quality through genetic engineering. In tomato, the development of fruit-specific promoters was previously reported, but less attention has been paid to the promoters involved in the fruit development stage. In this study, we characterized the gene expression patterns of tomato alcohol dehydrogenase 2 (SlAdh2) in various tissues of wild-type tomato (cv. Ailsa Craig). Our findings revealed that SlAdh2 expression levels were higher in the developing fruit than in the leaves, stems, and flowers. The ProSlAdh2 region, which is expressed at different stages of fruit development, was isolated from tomato genomic DNA. Following this, it was fused with a β-glucuronidase reporter gene (GUS) and introduced into wild-type tomato using Agrobacterium-mediated transformation to evaluate promoter activity in the various tissues of transgenic tomato. The ProSlAdh2:GUS promoter exhibited strong activity in the fruit and weak activity in the stems, but displayed undetectable activity in the leaves and flowers. Interestingly, the promoter was active from the appearance of the green fruit (1 cm in size) to the well-ripened stage in transgenic tomatoes, indicating its suitability for transgene expression during fruit development and ripening. Thus, our findings suggest that ProSlAdh2 may serve as a potential fruit-specific promoter for genetic-based improvement of tomato fruit quality.

Functional properties of an alternative, tissue-specific promoter for rice NADPH-dependent dihydroflavonol reductase

  • Kim, Joonki;Lee, Hye-Jung;Tyagi, Wricha;Kovach, Michael;Sweeney, Megan;McCouch, Susan;Cho, Yong-Gu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.163-163
    • /
    • 2017
  • A deletion analysis of the Oryza sativa dihydroflavonol reductase (DFR) promoter defined a 25 bp region (-386 to -362) sufficient to confer pericarp-specific expression of ${\beta}$ -glucuronidase(GUS) reporter gene in transgenic rice. Site-specific mutagenesis of these conserved sequences and subsequent expression analysis in calli which transiently expressed the mutated promoter::GUS gene showed that both bHLH (-386 to -381) and Myb (-368 to -362) binding sites in the DEL3 (-440 to 70) promoter were necessary for complete expression of the GUS gene including the tissue-specific expression of DFR::GUS gene. The GUS gene was expressed well in the mutated Myb (-368 to -362) binding site, but not as strong as in normal condition, implying that the Myb is also necessary to express GUS gene fully. Also, we found the non-epistatic relation between Rc and DFR. There were no changes of expression patterns GUS under the Rc and rc genotypes. Thus, DFR expression might be independent of the presence of functional Rc gene and suggested that Rc and Rd (DFR) share the same pathway controlling the regulation of flavonoid synthesis but not a direct positive transcriptional regulator of DFR gene.

  • PDF

Gene Analysis of A Fruit-specific Thaumatin-like Protein, VVTL1-homolog, from Campbell Cultivar of Grape (포도 캠벨 품종으로부터 과육 특이발현 VVTL1-homolog 유전자의 분석)

  • 김인중;김석만
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.5
    • /
    • pp.255-261
    • /
    • 2001
  • Vitis vinifera thaumatin-like protein (VVTL1) is a fruit-specific and ripening-related protein in grape. In order to isolate VVTL1-homolog gene and fruit-specific promoter from Campbell cultivar, we isolated a genomic clone containing VVTL1-homolog gene from grape genomic library through plaque hybridization. VVTL1-homolog gene has an intronless genomic structure, which the pattern is matched with those of other PR5 genes such as osmotin and osmotin-like protein genes. Transcription start site was determined by primer extension analysis. The promoter region of VVTL1-homolog gene contains a sequence or structure, especially the location and number of TCA box and ABRE (abscisic acid-responsive element), distinct from other reported plant PR5 genes, though with several known functional elements such as a TATA box and CAAT box. These results suggested that VVTL1-homolog gene may be regulated by a plant hormone, abscisic acid, and one or several stresses such osmotic pressure and pathogen infection. The isolation of fruit-specific promoter may be helpful to breed a genetically modified grape with valuable phenotype or materials in fruits.

  • PDF

Effects of Environmental Factors on Growth and Nitrogen Fixation Activity of Kummerowia striata (매듭풀의 생육과 질소고정 활성에 미치는 환경요인의 영향)

  • Song, Seung-Dal;Jung-Sook Park;In-Sook Kim
    • The Korean Journal of Ecology
    • /
    • v.18 no.1
    • /
    • pp.43-54
    • /
    • 1995
  • Effects of environmental factors of N, P, pH, moisture, temperature and oxygen on growth and nitrogen fixation activity of kummerowia striate (Thunb.) Schindler seedling, bearing symbiotic root nodules, were quantitatively analyzed during the growing period. The specific nitrogenase activity (ARA) of nodules showed the maximum value of 187 μmol C₂H₄g fr wt-1 h-1 6 weeks after seeds were germinated. The total nitrogenase activities per plant attained as 1.56, 0.85, 0.09 and 4.0, 1.11, 0.04 μmol C₂H₄hr-1, respectively for the treatments of 1, 3 and 5 mM NO₃ ̄and NH₄+ on the 60th day. While the plant grown in N-free media for 20 days after treatments of 5 mM NH₄+for 40 days resulted in 30 mg fr wt of nodule formation and exhibited the relative activities of 152% and 162% for total and specific ARA in comparison with those of control plant grown with N-free for 60 days. Total biomass and ARA was by 70% and 86% lower in N and P deficiency, respectively. The N and P deficient plot showed 70% and 86% decreases of total biomass and ARA in comparison with those of control. The plant grown with N-free for 20 days after pretreatment with N and P free media for 40 days showed the relative values of 77%, 118% and 150%, respectively for nodule biomass, total and specific ARA in comparison with those of control. The treatment with acid or alkali gradients resulted in significant decreases of nodule biomass and ARA. The optimum temperature and pO₂for ARA were 30°C and 40 kPa, respectively. Two peaks of diurnal variation appeared at 11:00 and 23:00 o'clocks by the continuous light condition. The plants with water stress by temporary wilting point rsulted in 95~97% inhibition for nodule respiration, transpiration and specific ARA. Transpiration and ARA ware recovered to 88% and 38% of those of water unstressed plants, respectively, 6 hours after the plants were rewatered from water stressed condition.

  • PDF

Prediction of the Occurring Time of Stall for a Booster Fan in a Power Plant Combusting Low Quality Coal through Draft Loss (저품위탄 연소시 탈황용 승압송풍기 실속시점 예측)

  • Kim, Yeong-Gyun;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.8 no.4
    • /
    • pp.34-39
    • /
    • 2012
  • This study presents how low quality coal combustion affects the desulfurizer draft system by correlating of draft loss in a coal-fired thermal power plant and predicts the stall occurrence time of a booster fan. In case of low quality coal, a lot of coal is needed to generate equivalent output power, thereby the rating of increasing draft loss was faster than designed amount of coal. We surely confirmed that draft loss affects the specific energy of a booster fan strongly. On this basis, it is possible to predict the occurring time of stall for a booster fan from current operation specific energy to stall limit specific energy. This study suggests increasing speed of draft loss in each caloric value and the impact of specific energy at a booster fan, it expects to help safe operating in a thermal power plant.

  • PDF

Molecular Cloning and Characterization of a Novel Stem-specific Gene from Camptotheca acuminata

  • Pi, Yan;Liao, Zhihua;Chai, Yourong;Zeng, Hainian;Wang, Peng;Gong, Yifu;Pang, Yongzhen;Sun, Xiaofen;Tang, Kexuan
    • BMB Reports
    • /
    • v.39 no.1
    • /
    • pp.68-75
    • /
    • 2006
  • In higher plants, P450s participate in the biosynthesis of many important secondary metabolites. Here we reported for the first time the isolation of a new cytochrome P450 cDNA that expressed in a stem-specific manner from Camptotheca acuminata (designated as CaSS), a native medicinal plant species in China, using RACE-PCR. The full-length cDNA of CaSS was 1735 bp long containing a 1530 bp open reading frame (ORF) encoding a polypeptide of 509 amino acids. Bioinformatic analysis revealed that CASS contained a heme-binding domain PFGXGRRXCX and showed homology to other plant cytochrome P450 monooxygenases and hydroxylases. Southern blotting analysis revealed that there was only one copy of the CaSS present in the genome of Camptotheca acuminata. Northern blotting analysis revealed that CaSS expressed, in a tissue-specific manner, highly in stem and lowly in root, leaf and flower. Our study suggests that CaSS is likely to be involved in the phenylpropanoid pathway.