Browse > Article
http://dx.doi.org/10.4014/jmb.0906.06019

A Real-Time PCR Assay for the Quantitative Detection of Ralstonia solanacearum in Horticultural Soil and Plant Tissues  

Chen, Yun (Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Engineering Center of Bioresource Pesticide in Jiangsu Province, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture)
Zhang, Wen-Zhi (Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Engineering Center of Bioresource Pesticide in Jiangsu Province, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture)
Liu, Xin (Institute of Biotechnology, Zhejiang University)
Ma, Zhong-Hua (Institute of Biotechnology, Zhejiang University)
Li, Bo (Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Engineering Center of Bioresource Pesticide in Jiangsu Province, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture)
Allen, Caitilyn (Department of Plant Pathology, University of Wisconsin)
Guo, Jian-Hua (Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Engineering Center of Bioresource Pesticide in Jiangsu Province, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.1, 2010 , pp. 193-201 More about this Journal
Abstract
A specific and rapid real-time PCR assay for detecting Ralstonia solanacearum in horticultural soil and plant tissues was developed in this study. The specific primers RSF/RSR were designed based on the upstream region of the UDP-3-O-acyl-GlcNAc deacetylase gene from R. solanacearum, and a PCR product of 159 bp was amplified specifically from 28 strains of R. solanacearum, which represent all genetically diverse AluI types and all 6 biovars, but not from any other nontarget species. The detection limit of $10^2\;CFU/g$ tomato stem and horticultural soil was achieved in this real-time PCR assay. The high sensitivity and specificity observed with field samples as well as with artificially infected samples suggested that this method might be a useful tool for detection and quantification of R. solanacearum in precise forecast and diagnosis.
Keywords
Detection; quantification; Ralstonia solanacearum; real-time PCR;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Pastrik, K. H., J. G. Elphinstone, and R. Pukall. 2002. Sequence analysis and detection of Ralstonia solanacearum by multiplex PCR amplification of 16S-23S ribosomal intergenic spacer region with internal positive control. Eur. J. Plant Pathol. 108: 831-842.   DOI   ScienceOn
2 Buddenhagen, I. W. 1986. Bacterial wilt revisited, pp. 126-143. In G. J. Persley (ed.). Bacterial Wilt Disease in Asia and the South Pacific. Proceedings of an International Workshop held at PCARRD, Los Banos, Philippines, 8-10 October 1985. ACIAR Proceedings 13.
3 Elphinstone, J. G., J. Hennessy, J. K. Wilson, and D. E. Stead. 1996. Sensitivity of different methods for the detection of Pseudomonas solanacearum (Smith) in potato tuber extracts. EPPO Bull. 26: 663-678.   DOI   ScienceOn
4 Elphinstone, J. G., H. M. Stanford, and D. E. Stead. 1998. Detection of Ralstonia solanacearum in potato tubers, Solanum dulcamara and associated irrigation water extracts, pp. 133-139. In P. Prior, C. Allen, and J. G. Elphinstone (eds.). Bacterial Wilt Disease: Molecular and Ecological Aspects. Springer Verlag, Berlin.
5 Grey, B. E. and T. R. Steck. 2001. The viable but nonculturable state of Ralstonia solanacearum may be involved in long-term survival and plant infection. Appl. Environ. Microbiol. 67: 3866-3872.   DOI   ScienceOn
6 Heuer, H., Y. N. Yin, Q. Y. Xue, K. Small, and J. H. Guo. 2007. Repeat domain diversity of avrBs3/pthA-like genes in Ralstonia solanacearum strains and association with host preferences in the field. AEM 73: 4379-4384.
7 Nakaho, K., H. Inoue, T. Takayama, and H. Miyagawa. 2004. Distribution and multiplication of Ralstonia solanacearum in tomato plants with resistance derived from different origins. J. Gen. Plant Pathol. 70: 115-119.   DOI   ScienceOn
8 Opina, N., F. Tavner, and G. Hollway. 1997. A novel method for development of species and strain specific DNA probes and PCR primers for identifying Burkholderia solanacearum (formerly Pseudomonas solanacearum). Asia Pac. J. Mol. Biol. Biotechnol. 5: 19-30.
9 Swanson, J. K., J. Yao, J. Tans-Kersten, and C. Allen. 2005. Behavior of Ralstonia solanacearum race 3 biovar 2 during latent and active infection of geranium. Phytopathology 95: 136-143.   DOI   ScienceOn
10 Weller, S. A., J. G. Elphinstone, N. C. Smith, N. Boonham, and D. E. Stead. 2000. Detection of Ralstonia solanacearum strains with a quantitative, multiplex, real-time, fluorogenic PCR (TaqMan) assay. Appl. Environ. Microbiol. 66: 2853-2858.   DOI   ScienceOn
11 Ma, Z. and J. Michailides Themis. 2007. Approaches for eliminating PCR inhibitors and designing PCR primers for the detection of phytopathogenic fungi. Crop Protect. 26: 145-161.   DOI   ScienceOn
12 Hayward, A. C., H. M. El-Nashaar, U. Nydegger, and L. De Lindo. 1990. Variation in nitrate metabolism in biovars of Pseudomonas solanacearum. J. Appl. Bacteriol. 69: 269-280.   DOI
13 Kang, M. J., M. H. Lee, J. K. Shim, S. T. Seo, R. Shrestha, M. S. Cho, J. H. Hahn, and D. S. Park. 2007. PCR-based specific detection of Ralstonia solanacearum by amplification of cytochrome c1 signal peptide sequences. J. Microbiol. Biotechnol. 17: 1765-1771.
14 Pastrik, K. H. and E. Maiss. 2000. Detection of Ralstonia solanacearum in potato tubers by polymerase chain reaction. J. Phytopathol. 148: 619-626.   DOI   ScienceOn
15 Poussier, S., D. Trigalet-Demery, P. Vandewalle, B. Goffinet, J. Luisetti, and A. Trigalet. 2000. Genetic diversity of Ralstonia solanacearum as assessed by PCR-RFLP of the hrp gene region, AFLP and 16S rRNA sequence analysis and identification of an African subdivision. Microbiology 146: 1679-1692.
16 Kutin, R. K., A. Alvarez, and D. M. Jenkins. 2009. Detection of Ralstonia solanacearum in natural substrates using phage amplification integrated with real-time PCR assay. J. Microbiol. Methods 76: 241-246.   DOI   ScienceOn
17 Oliver, J. D. 2000. The public health significance of viable but nonculturable bacteria, pp. 277-300. In R. R. Colwell and D. J. Grimes (eds.). Nonculturable Microorganisms in the Environment. ASM Press, Washington, D.C.
18 Villa, J. E., K. Tsuchiya, M. Horita, N. Opina, and M. Hyakumachi. 2005. Phylogenetic relationships of Ralstonia solanacearum species complex strains from Asia and other continents based on 16S rDNA, endoglucanase, and hrpB gene sequences. J. Gen. Plant Pathol. 71: 39-46.   DOI   ScienceOn
19 Pradhanang, P. M., J. G. Elphinstone, and R. T. V. Fox. 2000. Sensitive detection of Ralstonia solanacearum in soil: A comparison of different detection techniques. Plant Pathol. 49: 414-422.   DOI   ScienceOn
20 Taghavi, M., C. Hayward, L. I. Sly, and M. Fegan. 1996. Analysis of the phylogenetic relationships of strains of Burkholderia solanacearum, Pseudomonas syzygii, and the blood disease bacterium of banana based on 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 46: 10-15.   DOI   ScienceOn
21 He, L. Y., L. Sequeira, and A. Kelman. 1983. Characteristics of strains of Pseudomonas solanacearum from China. Plant Dis. 67: 1356-1361.
22 Horita, M., K. Tsuchiya, and A. Ooshiro. 2005. Characteristics of Ralstonia solanacearum biovar N2 strains in Asia. Phytopathology 153: 209-213.   DOI   ScienceOn
23 Schonfeld, J., H. Heuer, J. D. van Elsas, and K. Smalla. 2003. Specific and sensitive detection of Ralstonia solanacearum in soil on the basis of pcr amplification of flic fragments. Appl. Environ. Microbiol. 69: 7248-7256.   DOI   ScienceOn
24 Vander Wolf, J. M., S. G. C. Vriend, P. Kastelein, E. H. Nijhuis, P. J. van Bekkum, and J. W. L. van Vuurde. 2000. Immunofluorescence colony-staining (IFC) for detection and quantification of Ralstonia (Pseudomonas) solanacearum biovar 2 (race 3) in soil and verification of positive results by PCR and dilution plating. Eur. J. Plant Pathol. 106: 123-133.   DOI   ScienceOn
25 Xu, H.-S., N. Roberts, F. L. Singelton, R. W. Atwell, D. J. Grimes, and R. Colwell. 1982. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb. Ecol. 8: 313-323.   DOI   ScienceOn
26 van Elsas, JD., P. Kastelein, P. van Bekkum, J. M. van der Wolf, de Vries PM, and LS. van Overbeek. 2000. Survival of Ralstonia solanacearum biovar 2, the causative agent of potato brown rot, in field and microcosm soils in temperate climates. Phytopathology 90: 1358-1366.   DOI   ScienceOn
27 Hayward, A. 1994. Systematics and phylogeny of Pseudomonas solanacearum and related bacteria, pp. 127-135. In G. L. Hartman and A. C. Hayward (eds.). Bacterial Wilt: The Disease and its Causative Agent, Pseudomonas solanacearum. CAB International, Oxford, England.
28 Thammakijjawat, P., N. Thaveechai, W. Kositratana, J. Chunwongse, R. D. Frederick, and N. W. Schaad. 2006. Detection of Ralstonia solanacearum in ginger rhizomes by real-time PCR. Can. J. Plant Pathol. 28: 391-400.   DOI   ScienceOn
29 Rosello-Mora, R. and R. Amann. 2001. The species concept for prokaryotes. FEMS Microbiol. Rev. 25: 39-67.
30 Torsvik, V. and L. Ovreas. 2002. Microbiol diversity and function in soil: From gene to ecosystems. Curr. Opin. Microbiol. 5: 240-245.   DOI   ScienceOn
31 Poussier, S., J. J. Cheron, A. Couteau, and J. Luisetti. 2002. Evaluation of procedures for reliable PCR detection of Ralstonia solanacearum in common natural substrates. J. Microbiol. Methods 51: 349-359.   DOI   ScienceOn