• Title/Summary/Keyword: specific heat coefficient

Search Result 117, Processing Time 0.03 seconds

Study on Efficiency of Flat-Plate Solar Collector Using Nanofluids (나노유체를 이용한 평판형 태양열 집열기의 효율에 관한 연구)

  • Lee, Seung-Hyun;Jang, Seok Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.799-805
    • /
    • 2013
  • An analytical study is conducted to assess the efficiency of a flat-plate solar collector using nanofluids. The nondimensionalized 2D heat diffusion equation is solved by assuming a wavelength-independent extinction coefficient and intensity to obtain the analytical solution of the temperature distribution in the flat-plate solar collector. The dimensionless temperature distribution is investigated as functions of the volume fraction of the nanofluids, magnitude of heat loss, and collector's depth based on the analytical solution when using water-based single-walled carbon nanohorn (SWCNH) nanofluids as a working fluid. Finally, the efficiency of the flat-plate solar collector using the nanofluids is predicted and compared with that of the conventional solar collector. The results indicate that the efficiency of the nanofluid solar collector is better than that of the conventional solar collector under specific geometrical conditions.

Theoretical fabrication of Williamson nanoliquid over a stretchable surface

  • Sharif, Humaira;Hussain, Muzamal;Khadimallah, Mohamed Amine;Ayed, Hamdi;Taj, Muhammad;Bhutto, Javed Khan;Mahmoud, S.R.;Iqbal, Zafer;Ahmad, Shabbir;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • v.14 no.2
    • /
    • pp.103-113
    • /
    • 2022
  • On the basis of fabrication, the utilization of nano material in numerous industrial and technological system, obtained the utmost significance in current decade. Therefore, the current investigation presents a theoretical disposition regarding the flow of electric conducting Williamson nanoliquid over a stretchable surface in the presence of the motile microorganism. The impact of thermal radiation and magnetic parameter are incorporated in the energy equation. The concentration field is modified by adding the influence of chemical reaction. Moreover, the splendid features of nanofluid are displayed by utilizing the thermophoresis and Brownian motion aspects. Compatible similarity transformation is imposed on the equations governing the problem to derive the dimensionless ordinary differential equations. The Homotopy analysis method has been implemented to find the analytic solution of the obtained differential equations. The implications of specific parameters on profiles of velocity, temperature, concentration and motile microorganism density are investigated graphically. Moreover, coefficient of skin friction, Nusselt number, Sherwood number and density of motile number are clarified in tabular forms. It is revealed that thermal radiation, thermophoresis and Brownian motion parameters are very effective for improvement of heat transfer. The reported investigation can be used in improving the heat transfer appliances and systems of solar energy.

Measurement of Material Properties of Composites under High Temperature using Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서를 이용한 고온용 복합재료의 물성 측정)

  • 강동훈;박상욱;김수현;홍창선;김천곤
    • Composites Research
    • /
    • v.16 no.6
    • /
    • pp.41-47
    • /
    • 2003
  • Composites are widely used for aircraft, satellite and other structures due to its good mechanical and thermal characteristics such as low coefficient of thermal expansion(CTE), heat-resistance, high specific stiffness and specific strength. In order to use composites under condition of high temperature, however, material properties of composites at high temperatures must be measured and verified. In this paper, material properties of T700/Epoxy were measured through tension tests of composite specimens with an embedded FBG sensor in the thermal chamber at the temperatures of RT, $100^{\circ}$, $200^{\circ}$, $300^{\circ}$, $300^{\circ}$. Through the pre-test of an embedded optical fiber, we confirmed the embedding effects of an optical fiber on material properties of the composites. Two kinds of specimens of which stacking sequences are [0/{0}/0]$_{T}$. and [$90_2$/{0}/$90_2$]. were fabricated. From the experimental results, material property changes of composites were successfully shown according to temperatures and we confirmed that fiber Bragg grating sensor is very appropriate to strain measurement of composites under high temperature.

Defect Inspection and Physical-parameter Measurement for Silicon Carbide Large-aperture Optical Satellite Telescope Mirrors Made by the Liquid-silicon Infiltration Method (액상 실리콘 침투법으로 제작된 대구경 위성 망원경용 SiC 반사경의 결함 검사와 물성 계수 측정)

  • Bae, Jong In;Kim, Jeong Won;Lee, Haeng Bok;Kim, Myung-Whun
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.5
    • /
    • pp.218-229
    • /
    • 2022
  • We have investigated reliable inspection methods for finding the defects generated during the manufacturing process of lightweight, large-aperture satellite telescope mirrors using silicon carbide, and we have measured the basic physical properties of the mirrors. We applied the advanced ceramic material (ACM) method, a combined method using liquid-silicon penetration sintering and chemical vapor deposition for the carbon molded body, to manufacture four SiC mirrors of different sizes and shapes. We have provided the defect standards for the reflectors systematically by classifying the defects according to the size and shape of the mirrors, and have suggested effective nondestructive methods for mirror surface inspection and internal defect detection. In addition, we have analyzed the measurements of 14 physical parameters (including density, modulus of elasticity, specific heat, and heat-transfer coefficient) that are required to design the mirrors and to predict the mechanical and thermal stability of the final products. In particular, we have studied the detailed measurement methods and results for the elastic modulus, thermal expansion coefficient, and flexural strength to improve the reliability of mechanical property tests.

A Study on Thermal Properties of Epoxy Composites with Hybrid Fillers (하이브리드 필러를 함유한 에폭시 복합체의 열적 특성 연구)

  • Lee, Seungmin;Rho, Hokyun;Lee, Sang Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.33-37
    • /
    • 2019
  • In this study, the graded thermal properties of composites are obtained by difference in specific gravity of fillers including Cu, h-BN and GO powders in epoxy. Relatively heavy powders such as Cu and h-BN compared to GO mostly at the bottom layer, while light GO powders were dispersed in the top layer in the composites. The thermal conductivity of composites was gradually increased from 0.55 (0.52) W/mK to 2.82 (1.37) W/mK for GO/h-BN (GO/Cu) epoxy composites from surface to bottom. On the contrary, the coefficient of thermal expansion was decreased from 51 ppm/℃ to 23 ppm/℃ and from 57 ppm/℃ to 32 ppm/℃ for GO/Cu and GO/h-BN, respectively. The variation of thermal properties in composites is attributed due to intrinsic material properties of filler including thermal conductivity, morphology and the distribution by the specific weight of fillers. This simple strategy for realizing graded thermal composites by introducing different filler materials would be effective heat transfer at interface of heterostructure with large thermal properties such as inorganic semiconductor/plastic, metal/plastic, and semiconductor/metal.

Optimization Study for the Production of 6-Shogaol-rich Ginger (Zingiber officinale Roscoe) under Conditions of Mild Pressure and High Temperature (가압조건에서 생강 유래 6-shogaol 변환을 위한 가열 조건 최적화)

  • Park, Ho-Young;Ha, Sang Keun;Choi, Jiwon;Choi, Hee-Don;Kim, Yoonsook;Park, Yongkon
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.588-592
    • /
    • 2014
  • Under optimized condition mild pressure in combination with specific temperature for heat treatment transform the 6-gingerol into 6-shogaol. The purpose of this study was to optimize the conditions used for heat treatment under pressure for increasing 6-shogaol content in ginger (Zingiber officinale Roscoe). A central composite experimental design was used to evaluate the effects of application temperature ($70-130^{\circ}C$) and temperature-holding time (95-265 min) on the transformation of 6-shogaol. The experimental values were shown to be in significantly good agreement with the predicted values (adjusted determination coefficient, $R^2{_{Adj}}=0.9857$). 6-Shogaol content increased as the application temperature and temperature-holding time increased. By analyzing the response surface plots, the optimum conditions of heat treatment (temperature and time) for increasing 6-shogaol content were found to be $127^{\circ}C$ and 109 min, respectively. Under these optimal conditions, the predicted 6-shogaol content was 3.98 mg/g dried ginger. The adequacy of the model equation for predicting the optimum response values was effectively verified by the validation data.

Round robin analysis of vessel failure probabilities for PTS events in Korea

  • Jhung, Myung Jo;Oh, Chang-Sik;Choi, Youngin;Kang, Sung-Sik;Kim, Maan-Won;Kim, Tae-Hyeon;Kim, Jong-Min;Kim, Min Chul;Lee, Bong Sang;Kim, Jong-Min;Kim, Kyuwan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1871-1880
    • /
    • 2020
  • Round robin analyses for vessel failure probabilities due to PTS events are proposed for plant-specific analyses of all types of reactors developed in Korea. Four organizations, that are responsible for regulation, operation, research and design of the nuclear power plant in Korea, participated in the round robin analysis. The vessel failure probabilities from the probabilistic fracture mechanics analyses are calculated to assure the structural integrity of the reactor pressure vessel during transients that are expected to initiate PTS events. The failure probabilities due to various parameters are compared with each other. All results are obtained based on several assumptions about material properties, flaw distribution data, and transient data such as pressure, temperature, and heat transfer coefficient. The realistic input data can be used to obtain more realistic failure probabilities. The various results presented in this study will be helpful not only for benchmark calculations, result comparisons, and verification of PFM codes developed but also as a contribution to knowledge management for the future generation.

Study on Adsorption of Pb and Cd in Water Using Carbonized Water Treatment Sludge (탄화 정수 슬러지를 이용한 수중의 납과 카드뮴 흡착에 관한 연구)

  • Kim, Younjung;Kim, Daeik;Choi, Jong-Ha;Hong, Yong Pyo;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.5
    • /
    • pp.238-243
    • /
    • 2017
  • In this study, water treatment sludge carbonized with $400^{\circ}C$ was tested as an adsorbent for the removal of Pb and Cd in water. The carbonized sludge was characterized by thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray fluorescence spectrometry (XRF), and surface area analysis. Carbonized sludge exhibited much higher specific surface area and total pore volume than water treatment sludge itself. In batch-type adsorption process, carbonized sludge represented better adsorption performance for Pb than Cd, achieving 90~98% at the concentrations conducted in the experiments. Equilibrium data of adsorption were analyzed using the Freundlich and Langmuir isotherm models. It was seen that both Freundlich and Langmuir isotherms have correlation coefficient $R^2$ value larger than 0.95. The results of studies indicated that carbonized water treatment sludge by heat treatment could be used as an efficient adsorbent for the removal of Pb and Cd from water.

Sensitivity Test of the Parameterization Methods of Cloud Droplet Activation Process in Model Simulation of Cloud Formation (구름방울 활성화 과정 모수화 방법에 따른 구름 형성의 민감도 실험)

  • Kim, Ah-Hyun;Yum, Seong Soo;Chang, Dong Yeong
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.211-222
    • /
    • 2018
  • Cloud droplet activation process is well described by $K{\ddot{o}}hler$ theory and several parameterizations based on $K{\ddot{o}}hler$ theory are used in a wide range of models to represent this process. Here, we test the two different method of calculating the solute effect in the $K{\ddot{o}}hler$ equation, i.e., osmotic coefficient method (OSM) and ${\kappa}-K{\ddot{o}}hler$ method (KK). To do that, each method is implemented in the cloud droplet activation parameterization module of WRF-CHEM (Weather Research and Forecasting model coupled with Chemistry) model. It is assumed that aerosols are composed of five major components (i.e., sulfate, organic matter, black carbon, mineral dust, and sea salt). Both methods calculate similar representative hygroscopicity parameter values of 0.2~0.3 over the land, and 0.6~0.7 over the ocean, which are close to estimated values in previous studies. Simulated precipitation, and meteorological variables (i.e., specific heat and temperature) show good agreement with reanalysis. Spatial patterns of precipitation and liquid water path from model results and satellite data show similarity in general, but on regional scale spatial patterns and intensity show some discrepancy. However, meteorological variables, precipitation, and liquid water path do not show significant differences between OSM and KK simulations. So we suggest that the relatively simple KK method can be a good alternative to the OSM method that requires various information of density, molecular weight and dissociation number of each individual species in calculating the solute effect.

A Comparative Analysys of Window Energy Performance According to the Difference Between Actual size and Standard size (창호의 성능인증 규격 기준과 면적 변화에 따른 에너지성능 비교분석)

  • Kim, Seong-Beom;Lee, Su-Yeul;Kim, Dong-Yoon;Choi, Won-Ki
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.1
    • /
    • pp.49-60
    • /
    • 2020
  • This study reviewed selected specific windows and reviewed the window performance certification criteria including KS F 2278 and KS L 9107 and analyzed the change in performance based on the change of area. This study also compared the heating and cooling loads of an apartment house applied with window performance reviewed in consideration of insulation and SHGC performance and actual size based on KS F 2278. The analyzed window was a double window composed of aluminum and PVC and the building was the apartment house model of 141 ㎡. The analysis results were as follows. First, as the window glass's thermal performance is superior to frame, the performance degraded in reduced area. In case of selected window, the 1 m × 1m window's thermal performance and SHGC decreased by 35% and 37% respectively compared to 2 m × 2 m window. Secondly, in the comparison of performance for increasing area with 2 m × 2 m and 3 m × 3 m windows, the 3 m × 3 m window's thermal performance and SHCG increased about 14%. Third, in the comparison of heating and cooling loads of the analyzed model considering the apartment house model applied with window performance derived from KS F 2278 and actual figures, the model's total heating and cooling loads increased by 33% with cooling decreasing by 36% and heating increasing by 77%. Above analysis results show that evaluation of window performance based on criteria such as KS F 2278 and KS L 9107 may lead to distortion of performances different from actual products. Thus, it is necessary to suggest new evaluation criteria.