Browse > Article
http://dx.doi.org/10.12989/acc.2022.14.2.103

Theoretical fabrication of Williamson nanoliquid over a stretchable surface  

Sharif, Humaira (Department of Mathematics, Govt. College University Faisalabad)
Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
Khadimallah, Mohamed Amine (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department)
Ayed, Hamdi (Department of Civil Engineering, College of Engineering, King Khalid University)
Taj, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir)
Bhutto, Javed Khan (Electrical Engineering Department, College of Engineering, King Khalid University)
Mahmoud, S.R. (GRC Department, Faculty of Applied Studies, King Abdulaziz University)
Iqbal, Zafer (Department of Mathematics, University of Sargodha)
Ahmad, Shabbir (Department of Mathematics, COMSATS University Islamabad, Lahore Campus)
Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
Publication Information
Advances in concrete construction / v.14, no.2, 2022 , pp. 103-113 More about this Journal
Abstract
On the basis of fabrication, the utilization of nano material in numerous industrial and technological system, obtained the utmost significance in current decade. Therefore, the current investigation presents a theoretical disposition regarding the flow of electric conducting Williamson nanoliquid over a stretchable surface in the presence of the motile microorganism. The impact of thermal radiation and magnetic parameter are incorporated in the energy equation. The concentration field is modified by adding the influence of chemical reaction. Moreover, the splendid features of nanofluid are displayed by utilizing the thermophoresis and Brownian motion aspects. Compatible similarity transformation is imposed on the equations governing the problem to derive the dimensionless ordinary differential equations. The Homotopy analysis method has been implemented to find the analytic solution of the obtained differential equations. The implications of specific parameters on profiles of velocity, temperature, concentration and motile microorganism density are investigated graphically. Moreover, coefficient of skin friction, Nusselt number, Sherwood number and density of motile number are clarified in tabular forms. It is revealed that thermal radiation, thermophoresis and Brownian motion parameters are very effective for improvement of heat transfer. The reported investigation can be used in improving the heat transfer appliances and systems of solar energy.
Keywords
Brownian motion; convective conditions; Homotopy analysis; motile micro-organism; thermal radiation; Williamson nanofluid;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Razi, S.M., Soid, S.K., Aziz, A.S.A., Adli, N. and Ali, Z.M. (2019), "Williamson nanofluid flow over a stretching sheet with varied wall thickness and slip effects", In: Journal of Physics: Conference Series, Vol. 1366, No. 1, p. 012007. https://doi.org/10.1088/1742-6596/1366/1/012007   DOI
2 Sheikholeslami, M., Gerdroodbary, MB., Moradi, R., Shafee, A. and Li, Z. (2019a), "Application of Neural Network for estimation of heat transfer treatment of Al2O3-H2O nanofluid through a channel", Comput. Methods Appl. Mech. Eng., 344, 1-12. https://doi.org/10.1016/j.cma.2018.09.025   DOI
3 Sheikholeslami, M., Mehryan, S.A.M., Shafee, A. and Sheremet, M.A. (2019b), "Variable magnetic forces impact on magnetizable hybrid nanofluid heat transfer through a circular cavity", J. Molecular Liquids, 277, 388-396. https://doi.org/10.1016/j.molliq.2018.12.104   DOI
4 Szilagyi, I.M., Santala, E., Heikkila, M., Kemell, M., Nikitin, T., Khriachtchev, L., Rasanen, M., Ritala, M. and Leskela, M. (2011), "Thermal study on electrospun polyvinylpyrrolidone/ammonium metatungstate nanofibers: optimising the annealing conditions for obtaining WO3 nanofibers", J. Thermal Anal. Calorim., 105(1), 73. https://doi.org/10.1007/s10973-011-1631-5   DOI
5 Tlili, I. and Alharbi, T. (2022), "Investigation into the effect of changing the size of the air quality and stream to the trombe wall for two different arrangements of rectangular blocks of phase change material in this wall", J. Build. Eng., 52, 104328. https://doi.org/10.1016/j.jobe.2022.104328   DOI
6 Ullah, A., Shah, Z., Kumam, P., Ayaz, M., Islam, S. and Jameel, M. (2019), "Viscoelastic MHD nanofluid thin film flow over an unsteady vertical stretching sheet with entropy generation", Processes, 7(5), 262. https://doi.org/10.3390/pr7050262   DOI
7 Williamson, R.V. (1929), "The flow of pseudoplastic materials", Indust. Eng. Chem., 21(11), 1108-1111. https://doi.org/10.1021/ie5023   DOI
8 Maleki, H., Safaei, M.R., Togun, H. and Dahari, M. (2019), "Heat transfer and fluid flow of pseudo-plastic nanofluid over a moving permeable plate with viscous dissipation and heat absorption/generation", J. Thermal Anal. Calorim., 135(3), 1643-1654. https://doi.org/10.1007/s10973-018-7559-2   DOI
9 Mesbah, H.A. and Benzaid, R. (2017), "Damage-based stressstrain model of RC cylinders wrapped with CFRP composites", Adv. Concrete Constr., Int. J., 5(5), 539-561. https://doi.org/10.12989/acc.2017.5.5.539   DOI
10 Mustafa, M., Khan, J.A., Hayat, T. and Alsaedi, A. (2015), "Sakiadis flow of Maxwell fluid considering magnetic field and convective boundary conditions", Aip Adv., 5(2), 027106. https://doi.org/10.1063/1.4907927   DOI
11 Nadeem, S., Hussain, M. and Naz, M. (2010), "MHD stagnation flow of a micropolar fluid through a porous medium", Meccanica, 45(6), 869-880. https://doi.org/10.1007/s11012-010-9297-9   DOI
12 Choi, S.U. and Eastman, J.A. (1995), Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29), Argonne National Lab., IL, USA.
13 Nazari, S., Ellahi, R., Sarafraz, M.M., Safaei, M., Asgari, A. and Akbari, O.A. (2019), "Numerical study on mixed convection of a non-Newtonian nanofluid with porous media in a two liddriven square cavity", J. Thermal Anal. Calorim., 1-25. https://doi.org/10.1007/s10973-019-08841-1   DOI
14 Pramuanjaroenkij, A., Tongkratoke, A. and Kakac, S. (2018), "Numerical study of mixing thermal conductivity models for nanofluid heat transfer enhancement", J. Eng. Phys. Thermophys., 91(1), 104-114. https://doi.org/10.1007/s10891-018-1724-0   DOI
15 Rashidi, S., Javadi, P. and Esfahani, J.A. (2019), "Second law of thermodynamics analysis for nanofluid turbulent flow inside a solar heater with the ribbed absorber plate", J. Thermal Anal. Calorim., 135(1), 551-563. https://doi.org/10.1007/s10973-018-7164-4   DOI
16 Alzahrani, J., Vaidya, H., Prasad, K.V., Rajashekhar, C., Mahendra, D.L. and Tlili, I. (2022), "Micro-polar fluid flow over a unique form of vertical stretching sheet: Special emphasis to temperature-dependent properties", Case Stud. Thermal Eng., 34, 102037. https://doi.org/10.1016/j.csite.2022.102037   DOI
17 Ayodeji, F., Tope, A. and Samuel, O. (2019), "Magneto-Hydrodynamics (MHD) Bioconvection Nanofluid Slip Flow over a Stretching Sheet with Microorganism Concentration and Bioconvection Peclet Number Effects", Am. J. Mech. Indust. Eng., 4(6), 86-95. https://doi.org/10.11648/j.ajmie.20190406.11   DOI
18 Jha, B.K. and Apere, C.A. (2013), "Unsteady MHD two-phase Couette flow of fluid-particle suspension", Appl. Mathe. Modell., 37(4), 1920-1931. https://doi.org/10.1016/j.apm.2012.04.056   DOI
19 Gireesha, B.J., Mahanthesh, B. and Rashidi, M.M. (2015), "MHD boundary layer heat and mass transfer of a chemically reacting Casson fluid over a permeable stretching surface with nonuniform heat source/ sink", Int. J. Indust. Mathe., 7(3), 247-260.
20 Hayat, T., Asad, S., Mustafa, M. and Alsaedi, A. (2015), "MHD stagnation-point flow of Jeffrey fluid over a convectively heated stretching sheet", Comput. Fluids, 108, 179-185. https://doi.org/10.1016/j.compfluid.2014.11.016   DOI
21 Khan, A., Ali, H.M., Nazir, R., Ali, R., Munir, A., Ahmad, B. and Ahmad, Z. (2019), "Experimental investigation of enhanced heat transfer of a car radiator using ZnO nanoparticles in H 2 O-ethylene glycol mixture", J. Thermal Anal. Calorim., 138(5), 3007-3021. https://doi.org/10.1007/s10973-019-08320-7   DOI
22 Liang, G. and Mudawar, I. (2019), "Review of single-phase and two-phase nanofluid heat transfer in macro-channels and microchannels", Int. J. Heat Mass Transfer, 136, 324-354. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.086   DOI
23 Makinde, O.D., Khan, W.A. and Khan, Z.H. (2013), "Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet", Int. J. Heat Mass Transfer, 62, 526-533. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.049   DOI
24 Mustafa, M., Hina, S., Hayat, T. and Alsaedi, A. (2013), "Slip effects on the peristaltic motion of nanofluid in a channel with wall properties", J. Heat Transfer, 135(4). https://doi.org/10.1115/1.4023038   DOI
25 Siddiqa, S., Begum, N., Saleem, S., Hossain, M.A. and Gorla, R.S.R. (2016), "Numerical solutions of nanofluid bioconvection due to gyrotactic microorganisms along a vertical wavy cone", Int. J. Heat Mass Transfer, 101, 608-613. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.076   DOI
26 Nasiri, H., Jamalabadi, M.Y.A., Sadeghi, R., Safaei, M.R., Nguyen, T.K. and Shadloo, M.S. (2019), "A smoothed particle hydrodynamics approach for numerical simulation of nano-fluid flows", J. Thermal Anal. Calorim., 135(3), 1733-1741. https://doi.org/10.1007/s10973-018-7022-4   DOI
27 Qi, X., Sidi, M.O., Tlili, I., Ibrahim, T.K., Elkotb, M.A., El- Shorbagy, M.A. and Li, Z. (2022), "Optimization and sensitivity analysis of extended surfaces during melting and freezing of phase changing materials in cylindrical Lithium-ion battery cooling", J. Energy Storage, 51, 104545. https://doi.org/10.1016/j.est.2022.104545   DOI
28 Samadvand, H. and Dehestani, M. (2020), "A stress-function variational approach toward CFRP-concrete interfacial stresses in bonded joints", Adv. Concrete Constr., Int. J., 9(1), 43-54. https://doi.org/10.12989/acc.2020.9.1.043   DOI
29 Alfven, H. (1942), "Existence of electromagnetic-hydrodynamic waves", Nature, 150(3805), 405-406. https://doi.org/10.1038/150405d0   DOI
30 Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., Int. J., 6(6), 585-610. https://doi.org/10.12989/acc.2018.6.6.585   DOI
31 Tlili, I., Sajadi, S.M., Baleanu, D. and Ghaemi, F. (2022), "Flat sheet direct contact membrane distillation study to decrease the energy demand for solar desalination purposes", Sustain. Energy Technol. Assessm., 52, 102100. https://doi.org/10.1016/j.seta.2022.102100   DOI
32 Gao, J., Liu, J., Yue, H., Zhao, Y., Tlili, I. and Karimipour, A. (2022), "Effects of various temperature and pressure initial conditions to predict the thermal conductivity and phase alteration duration of water based carbon hybrid nanofluids via MD approach", J. Molecul. Liquids, 351, 118654.   DOI
33 Alkanhal, T.A., Sheikholeslami, M., Usman, M., Haq, R.U., Shafee, A., Al-Ahmadi, A.S. and Tlili, I. (2019), "Thermal management of MHD nanofluid within the porous medium enclosed in a wavy shaped cavity with square obstacle in the presence of radiation heat source", Int. J. Heat Mass Transfer, 139, 87-94. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.006   DOI
34 Ayodeji, F., Tope, A. and Pele, O. (2020), "Magnetohydrodynamics (MHD) Bioconvection nanofluid slip flow over a stretching sheet with thermophoresis, viscous dissipation and brownian motion", Mach. Learn. Res., 4(4), 51. https://doi.org/10.11648/j.mlr.20190404.12   DOI
35 Demir, A.D. and Livaoglu, R. (2019), "The role of slenderness on the seismic behavior of ground-supported cylindrical silos", Adv. Concrete Constr., Int. J., 7(2), 65-74. https://doi.org/10.12989/acc.2019.7.2.065   DOI
36 Kagimoto, H., Yasuda, Y. and Kawamura, M. (2015), "Mechanisms of ASR surface cracking in a massive concrete cylinder", Adv. Concrete Constr., Int. J., 3(1), 39-54. https://doi.org/10.12989/acc.2015.3.1.039   DOI
37 Hassan, A., Wahab, A., Qasim, M.A., Janjua, M.M., Ali, M.A., Ali, H.M., Jadoon, T.R., Ali, E., Raza, A. and Javaid, N. (2020), "Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materialsnanofluids system", Renew. Energy, 145, 282-293. https://doi.org/10.1016/j.renene.2019.05.130   DOI
38 Hayat, T. and Mehmood, O.U. (2011), "Slip effects on MHD flow of third order fluid in a planar channel", Commun. Nonlinear Sci. Numer. Simul., 16(3), 1363-1377. https://doi.org/10.1016/j.cnsns.2010.06.034   DOI
39 Ibanez, G., Lopez, A., Lopez, I., Pantoja, J., Moreira, J. and Lastres, O. (2019), "Optimization of MHD nanofluid flow in a vertical microchannel with a porous medium, nonlinear radiation heat flux, slip flow and convective-radiative boundary conditions", J. Thermal Anal. Calorim., 135(6), 3401-3420. https://doi.org/10.1007/s10973-018-7558-3   DOI
40 Ibrahim, W. and Gamachu, D. (2019), "Nonlinear convection flow of Williamson nanofluid past a radially stretching surface", AIP Adv., 9(8), 085026. https://doi.org/10.1063/1.5113688   DOI
41 Khan, W.A. and Pop, I. (2010), "Boundary-layer flow of a nanofluid past a stretching sheet", Int. J. Heat Mass Transfer, 53(11-12), 2477-2483. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032   DOI
42 Makinde, O.D. and Aziz, A. (2010), "MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition", Int. J. Thermal Sci., 49(9), 1813-1820. https://doi.org/10.1016/j.ijthermalsci.2010.05.015   DOI
43 Kumaran, V. and Ramanaiah. G. (1996), "A note on the flow over a stretching sheet", Acta Mecca, 116(1), 229-233. https://doi.org/10.35940/ijrte.c4861.098319   DOI
44 Kuznetsov, A.V. and Nield, D.A. (2010), "Natural convective boundary-layer flow of a nanofluid past a vertical plate", Int. J. Thermal Sci., 49(2), 243-247. https://doi.org/10.1016/j.ijthermalsci.2009.07.015   DOI
45 Makinde, O.D. (2010), "Similarity solution of hydromagnetic heat and mass transfer over a vertical plate with a convective surface boundary condition", Int. J. Phys. Sci., 5(6), 700-710. http://www.academicjournals.org/IJPS
46 Zhang, J., Sajadi, S.M., Chen, Y., Tlili, I. and Fagiry, M.A. (2022), "Effects of Al2O3 and TiO2 nanoparticles in order to reduce the energy demand in the conventional buildings by integrating the solar collectors and phase change materials", Sustain. Energy Technol. Assessm., 52, 102114. https://doi.org/10.1016/j.seta.2022.102114   DOI