Theoretical fabrication of Williamson nanoliquid over a stretchable surface |
Sharif, Humaira
(Department of Mathematics, Govt. College University Faisalabad)
Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) Khadimallah, Mohamed Amine (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) Ayed, Hamdi (Department of Civil Engineering, College of Engineering, King Khalid University) Taj, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir) Bhutto, Javed Khan (Electrical Engineering Department, College of Engineering, King Khalid University) Mahmoud, S.R. (GRC Department, Faculty of Applied Studies, King Abdulaziz University) Iqbal, Zafer (Department of Mathematics, University of Sargodha) Ahmad, Shabbir (Department of Mathematics, COMSATS University Islamabad, Lahore Campus) Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University) |
1 | Razi, S.M., Soid, S.K., Aziz, A.S.A., Adli, N. and Ali, Z.M. (2019), "Williamson nanofluid flow over a stretching sheet with varied wall thickness and slip effects", In: Journal of Physics: Conference Series, Vol. 1366, No. 1, p. 012007. https://doi.org/10.1088/1742-6596/1366/1/012007 DOI |
2 | Sheikholeslami, M., Gerdroodbary, MB., Moradi, R., Shafee, A. and Li, Z. (2019a), "Application of Neural Network for estimation of heat transfer treatment of Al2O3-H2O nanofluid through a channel", Comput. Methods Appl. Mech. Eng., 344, 1-12. https://doi.org/10.1016/j.cma.2018.09.025 DOI |
3 | Sheikholeslami, M., Mehryan, S.A.M., Shafee, A. and Sheremet, M.A. (2019b), "Variable magnetic forces impact on magnetizable hybrid nanofluid heat transfer through a circular cavity", J. Molecular Liquids, 277, 388-396. https://doi.org/10.1016/j.molliq.2018.12.104 DOI |
4 | Szilagyi, I.M., Santala, E., Heikkila, M., Kemell, M., Nikitin, T., Khriachtchev, L., Rasanen, M., Ritala, M. and Leskela, M. (2011), "Thermal study on electrospun polyvinylpyrrolidone/ammonium metatungstate nanofibers: optimising the annealing conditions for obtaining WO3 nanofibers", J. Thermal Anal. Calorim., 105(1), 73. https://doi.org/10.1007/s10973-011-1631-5 DOI |
5 | Tlili, I. and Alharbi, T. (2022), "Investigation into the effect of changing the size of the air quality and stream to the trombe wall for two different arrangements of rectangular blocks of phase change material in this wall", J. Build. Eng., 52, 104328. https://doi.org/10.1016/j.jobe.2022.104328 DOI |
6 | Ullah, A., Shah, Z., Kumam, P., Ayaz, M., Islam, S. and Jameel, M. (2019), "Viscoelastic MHD nanofluid thin film flow over an unsteady vertical stretching sheet with entropy generation", Processes, 7(5), 262. https://doi.org/10.3390/pr7050262 DOI |
7 | Williamson, R.V. (1929), "The flow of pseudoplastic materials", Indust. Eng. Chem., 21(11), 1108-1111. https://doi.org/10.1021/ie5023 DOI |
8 | Maleki, H., Safaei, M.R., Togun, H. and Dahari, M. (2019), "Heat transfer and fluid flow of pseudo-plastic nanofluid over a moving permeable plate with viscous dissipation and heat absorption/generation", J. Thermal Anal. Calorim., 135(3), 1643-1654. https://doi.org/10.1007/s10973-018-7559-2 DOI |
9 | Mesbah, H.A. and Benzaid, R. (2017), "Damage-based stressstrain model of RC cylinders wrapped with CFRP composites", Adv. Concrete Constr., Int. J., 5(5), 539-561. https://doi.org/10.12989/acc.2017.5.5.539 DOI |
10 | Mustafa, M., Khan, J.A., Hayat, T. and Alsaedi, A. (2015), "Sakiadis flow of Maxwell fluid considering magnetic field and convective boundary conditions", Aip Adv., 5(2), 027106. https://doi.org/10.1063/1.4907927 DOI |
11 | Nadeem, S., Hussain, M. and Naz, M. (2010), "MHD stagnation flow of a micropolar fluid through a porous medium", Meccanica, 45(6), 869-880. https://doi.org/10.1007/s11012-010-9297-9 DOI |
12 | Nazari, S., Ellahi, R., Sarafraz, M.M., Safaei, M., Asgari, A. and Akbari, O.A. (2019), "Numerical study on mixed convection of a non-Newtonian nanofluid with porous media in a two liddriven square cavity", J. Thermal Anal. Calorim., 1-25. https://doi.org/10.1007/s10973-019-08841-1 DOI |
13 | Pramuanjaroenkij, A., Tongkratoke, A. and Kakac, S. (2018), "Numerical study of mixing thermal conductivity models for nanofluid heat transfer enhancement", J. Eng. Phys. Thermophys., 91(1), 104-114. https://doi.org/10.1007/s10891-018-1724-0 DOI |
14 | Rashidi, S., Javadi, P. and Esfahani, J.A. (2019), "Second law of thermodynamics analysis for nanofluid turbulent flow inside a solar heater with the ribbed absorber plate", J. Thermal Anal. Calorim., 135(1), 551-563. https://doi.org/10.1007/s10973-018-7164-4 DOI |
15 | Alzahrani, J., Vaidya, H., Prasad, K.V., Rajashekhar, C., Mahendra, D.L. and Tlili, I. (2022), "Micro-polar fluid flow over a unique form of vertical stretching sheet: Special emphasis to temperature-dependent properties", Case Stud. Thermal Eng., 34, 102037. https://doi.org/10.1016/j.csite.2022.102037 DOI |
16 | Ayodeji, F., Tope, A. and Samuel, O. (2019), "Magneto-Hydrodynamics (MHD) Bioconvection Nanofluid Slip Flow over a Stretching Sheet with Microorganism Concentration and Bioconvection Peclet Number Effects", Am. J. Mech. Indust. Eng., 4(6), 86-95. https://doi.org/10.11648/j.ajmie.20190406.11 DOI |
17 | Choi, S.U. and Eastman, J.A. (1995), Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29), Argonne National Lab., IL, USA. |
18 | Gireesha, B.J., Mahanthesh, B. and Rashidi, M.M. (2015), "MHD boundary layer heat and mass transfer of a chemically reacting Casson fluid over a permeable stretching surface with nonuniform heat source/ sink", Int. J. Indust. Mathe., 7(3), 247-260. |
19 | Hayat, T., Asad, S., Mustafa, M. and Alsaedi, A. (2015), "MHD stagnation-point flow of Jeffrey fluid over a convectively heated stretching sheet", Comput. Fluids, 108, 179-185. https://doi.org/10.1016/j.compfluid.2014.11.016 DOI |
20 | Jha, B.K. and Apere, C.A. (2013), "Unsteady MHD two-phase Couette flow of fluid-particle suspension", Appl. Mathe. Modell., 37(4), 1920-1931. https://doi.org/10.1016/j.apm.2012.04.056 DOI |
21 | Khan, A., Ali, H.M., Nazir, R., Ali, R., Munir, A., Ahmad, B. and Ahmad, Z. (2019), "Experimental investigation of enhanced heat transfer of a car radiator using ZnO nanoparticles in H 2 O-ethylene glycol mixture", J. Thermal Anal. Calorim., 138(5), 3007-3021. https://doi.org/10.1007/s10973-019-08320-7 DOI |
22 | Liang, G. and Mudawar, I. (2019), "Review of single-phase and two-phase nanofluid heat transfer in macro-channels and microchannels", Int. J. Heat Mass Transfer, 136, 324-354. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.086 DOI |
23 | Makinde, O.D., Khan, W.A. and Khan, Z.H. (2013), "Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet", Int. J. Heat Mass Transfer, 62, 526-533. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.049 DOI |
24 | Mustafa, M., Hina, S., Hayat, T. and Alsaedi, A. (2013), "Slip effects on the peristaltic motion of nanofluid in a channel with wall properties", J. Heat Transfer, 135(4). https://doi.org/10.1115/1.4023038 DOI |
25 | Nasiri, H., Jamalabadi, M.Y.A., Sadeghi, R., Safaei, M.R., Nguyen, T.K. and Shadloo, M.S. (2019), "A smoothed particle hydrodynamics approach for numerical simulation of nano-fluid flows", J. Thermal Anal. Calorim., 135(3), 1733-1741. https://doi.org/10.1007/s10973-018-7022-4 DOI |
26 | Qi, X., Sidi, M.O., Tlili, I., Ibrahim, T.K., Elkotb, M.A., El- Shorbagy, M.A. and Li, Z. (2022), "Optimization and sensitivity analysis of extended surfaces during melting and freezing of phase changing materials in cylindrical Lithium-ion battery cooling", J. Energy Storage, 51, 104545. https://doi.org/10.1016/j.est.2022.104545 DOI |
27 | Samadvand, H. and Dehestani, M. (2020), "A stress-function variational approach toward CFRP-concrete interfacial stresses in bonded joints", Adv. Concrete Constr., Int. J., 9(1), 43-54. https://doi.org/10.12989/acc.2020.9.1.043 DOI |
28 | Alfven, H. (1942), "Existence of electromagnetic-hydrodynamic waves", Nature, 150(3805), 405-406. https://doi.org/10.1038/150405d0 DOI |
29 | Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., Int. J., 6(6), 585-610. https://doi.org/10.12989/acc.2018.6.6.585 DOI |
30 | Siddiqa, S., Begum, N., Saleem, S., Hossain, M.A. and Gorla, R.S.R. (2016), "Numerical solutions of nanofluid bioconvection due to gyrotactic microorganisms along a vertical wavy cone", Int. J. Heat Mass Transfer, 101, 608-613. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.076 DOI |
31 | Tlili, I., Sajadi, S.M., Baleanu, D. and Ghaemi, F. (2022), "Flat sheet direct contact membrane distillation study to decrease the energy demand for solar desalination purposes", Sustain. Energy Technol. Assessm., 52, 102100. https://doi.org/10.1016/j.seta.2022.102100 DOI |
32 | Alkanhal, T.A., Sheikholeslami, M., Usman, M., Haq, R.U., Shafee, A., Al-Ahmadi, A.S. and Tlili, I. (2019), "Thermal management of MHD nanofluid within the porous medium enclosed in a wavy shaped cavity with square obstacle in the presence of radiation heat source", Int. J. Heat Mass Transfer, 139, 87-94. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.006 DOI |
33 | Ayodeji, F., Tope, A. and Pele, O. (2020), "Magnetohydrodynamics (MHD) Bioconvection nanofluid slip flow over a stretching sheet with thermophoresis, viscous dissipation and brownian motion", Mach. Learn. Res., 4(4), 51. https://doi.org/10.11648/j.mlr.20190404.12 DOI |
34 | Demir, A.D. and Livaoglu, R. (2019), "The role of slenderness on the seismic behavior of ground-supported cylindrical silos", Adv. Concrete Constr., Int. J., 7(2), 65-74. https://doi.org/10.12989/acc.2019.7.2.065 DOI |
35 | Gao, J., Liu, J., Yue, H., Zhao, Y., Tlili, I. and Karimipour, A. (2022), "Effects of various temperature and pressure initial conditions to predict the thermal conductivity and phase alteration duration of water based carbon hybrid nanofluids via MD approach", J. Molecul. Liquids, 351, 118654. DOI |
36 | Hassan, A., Wahab, A., Qasim, M.A., Janjua, M.M., Ali, M.A., Ali, H.M., Jadoon, T.R., Ali, E., Raza, A. and Javaid, N. (2020), "Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materialsnanofluids system", Renew. Energy, 145, 282-293. https://doi.org/10.1016/j.renene.2019.05.130 DOI |
37 | Hayat, T. and Mehmood, O.U. (2011), "Slip effects on MHD flow of third order fluid in a planar channel", Commun. Nonlinear Sci. Numer. Simul., 16(3), 1363-1377. https://doi.org/10.1016/j.cnsns.2010.06.034 DOI |
38 | Ibanez, G., Lopez, A., Lopez, I., Pantoja, J., Moreira, J. and Lastres, O. (2019), "Optimization of MHD nanofluid flow in a vertical microchannel with a porous medium, nonlinear radiation heat flux, slip flow and convective-radiative boundary conditions", J. Thermal Anal. Calorim., 135(6), 3401-3420. https://doi.org/10.1007/s10973-018-7558-3 DOI |
39 | Ibrahim, W. and Gamachu, D. (2019), "Nonlinear convection flow of Williamson nanofluid past a radially stretching surface", AIP Adv., 9(8), 085026. https://doi.org/10.1063/1.5113688 DOI |
40 | Kagimoto, H., Yasuda, Y. and Kawamura, M. (2015), "Mechanisms of ASR surface cracking in a massive concrete cylinder", Adv. Concrete Constr., Int. J., 3(1), 39-54. https://doi.org/10.12989/acc.2015.3.1.039 DOI |
41 | Khan, W.A. and Pop, I. (2010), "Boundary-layer flow of a nanofluid past a stretching sheet", Int. J. Heat Mass Transfer, 53(11-12), 2477-2483. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032 DOI |
42 | Kumaran, V. and Ramanaiah. G. (1996), "A note on the flow over a stretching sheet", Acta Mecca, 116(1), 229-233. https://doi.org/10.35940/ijrte.c4861.098319 DOI |
43 | Kuznetsov, A.V. and Nield, D.A. (2010), "Natural convective boundary-layer flow of a nanofluid past a vertical plate", Int. J. Thermal Sci., 49(2), 243-247. https://doi.org/10.1016/j.ijthermalsci.2009.07.015 DOI |
44 | Makinde, O.D. (2010), "Similarity solution of hydromagnetic heat and mass transfer over a vertical plate with a convective surface boundary condition", Int. J. Phys. Sci., 5(6), 700-710. http://www.academicjournals.org/IJPS |
45 | Makinde, O.D. and Aziz, A. (2010), "MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition", Int. J. Thermal Sci., 49(9), 1813-1820. https://doi.org/10.1016/j.ijthermalsci.2010.05.015 DOI |
46 | Zhang, J., Sajadi, S.M., Chen, Y., Tlili, I. and Fagiry, M.A. (2022), "Effects of Al2O3 and TiO2 nanoparticles in order to reduce the energy demand in the conventional buildings by integrating the solar collectors and phase change materials", Sustain. Energy Technol. Assessm., 52, 102114. https://doi.org/10.1016/j.seta.2022.102114 DOI |
![]() |