Browse > Article
http://dx.doi.org/10.14191/Atmos.2018.28.2.211

Sensitivity Test of the Parameterization Methods of Cloud Droplet Activation Process in Model Simulation of Cloud Formation  

Kim, Ah-Hyun (Department of Atmospheric Sciences and Global Environment Laboratory, Yonsei University)
Yum, Seong Soo (Department of Atmospheric Sciences and Global Environment Laboratory, Yonsei University)
Chang, Dong Yeong (Department of Atmospheric Sciences and Global Environment Laboratory, Yonsei University)
Publication Information
Atmosphere / v.28, no.2, 2018 , pp. 211-222 More about this Journal
Abstract
Cloud droplet activation process is well described by $K{\ddot{o}}hler$ theory and several parameterizations based on $K{\ddot{o}}hler$ theory are used in a wide range of models to represent this process. Here, we test the two different method of calculating the solute effect in the $K{\ddot{o}}hler$ equation, i.e., osmotic coefficient method (OSM) and ${\kappa}-K{\ddot{o}}hler$ method (KK). To do that, each method is implemented in the cloud droplet activation parameterization module of WRF-CHEM (Weather Research and Forecasting model coupled with Chemistry) model. It is assumed that aerosols are composed of five major components (i.e., sulfate, organic matter, black carbon, mineral dust, and sea salt). Both methods calculate similar representative hygroscopicity parameter values of 0.2~0.3 over the land, and 0.6~0.7 over the ocean, which are close to estimated values in previous studies. Simulated precipitation, and meteorological variables (i.e., specific heat and temperature) show good agreement with reanalysis. Spatial patterns of precipitation and liquid water path from model results and satellite data show similarity in general, but on regional scale spatial patterns and intensity show some discrepancy. However, meteorological variables, precipitation, and liquid water path do not show significant differences between OSM and KK simulations. So we suggest that the relatively simple KK method can be a good alternative to the OSM method that requires various information of density, molecular weight and dissociation number of each individual species in calculating the solute effect.
Keywords
Cloud droplet activation parameterization; cloud condensation nuclei; aerosol hygroscopicity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103.
2 IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 976 pp.
3 IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
4 Janssens-Maenhout, G., and Coauthors, 2015: HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmos. Chem. Phys., 15, 11411-11432.   DOI
5 Jones, A., D. L. Roberts, and A. Slingo, 1994: A climate model study of indirect radiative forcing by anthropogenic sulfate aerosols. Nature, 370, 450-453.   DOI
6 Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437-472.   DOI
7 Khvorostyanov, V. I., and J. A. Curry, 2014: Thermodynamics, Kinetics, and Microphysics of clouds. Cambridge Univ. Press, 782 pp.
8 Kim, D., C. Wang, A. M. L. Ekman, M. C. Barth, and P. J. Rasch, 2008: Distribution and direct radiative forcing of carbonaceous and sulfate aerosols in an interactive size resolving aerosol climate model. J. Geophys. Res, 113, D16309.
9 Abdul-Razzak, H., S. J. Ghan, and C. Rivera-Carpio, 1998: A parameterization of aerosol activation. Part I: Single aerosol type. J. Geophys. Res., 103, 6123-6131.   DOI
10 Abdul-Razzak, H., and S. J. Ghan, 2000: A parameterization of aerosol activation: 2. Multiple aerosol types. J. Geophys. Res., 105, 6837-6844.   DOI
11 Ackermann, I. J., H. Hass, M. Memmesheimer, A. Ebel, F. S. Binkowski, and U. Shankar, 1998: Modal aerosol dynamics model for Europe: Development and first applications. Atmos. Environ., 32, 2981-2999.   DOI
12 Kim, J. H., S. S. Yum, S. Shim, W. J. Kim, M. Park, J.-H. Kim, M.-H. Kim, and S.-C. Yoon, 2014: On the submicron aerosol distributions and CCN number concentrations in and around the Korean Peninsula. Atmos. Chem. Phys., 14, 8763-8779, doi:10.5194/acp-14-8763-2014.   DOI
13 Kim, N., and Coauthors, 2017: Hygroscopic properties of urban aerosols and their cloud condensation nuclei activities measured in Seoul during the MAPS-Seoul campaign. Atmos. Environ., 153, 217-232, doi:10.1016/j.atmosenv.2017.01.034.   DOI
14 Koehler, K. A., S. M. Kreidenweis, P. J. DeMott, M. D. Petters, A. J. Prenni, and C. M. Carrico, 2009: Hygroscopicity and cloud droplet activation of mineral dust aerosol. Geophys. Res. Lett., 36, L08805.
15 Kreidenweis, S. M., K. Koehler, P. J. DeMott, A. J. Prenni, C. Carrico, and B. Ervens, 2005: Water activity and activation diameters from hygroscopicity data - Part I: Theory and application to inorganic salts. Atmos. Chem. Phys., 5, 1357-1370.   DOI
16 Lyubartsev, A. P., and A. Laaksonen, 1997: Osmotic and activity coefficients from effective potentials for hydrated ions. Phys. Rew. E, 55, 5689-5696.
17 Albrecht, B. A., 1989: Aerosols, cloud microphysics and fractional cloudiness. Science, 245, 1227-1230.   DOI
18 Andreae, M. O. and D. Rosenfeld, 2008: Aerosol-cloud precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth. Sci. Rev., 89, 13-41.   DOI
19 Mann, G. W., K. S. Carslaw, D. V. Spracklen, D. A. Ridley, P. T. Manktelow, M. P. Chipperfield, S. J. Pickering, and C. E. Johnson, 2010: Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model. Geosci. Model Dev., 3, 519-551.   DOI
20 Mason, B. J., 1971: The physics of clouds: 2nd Ed., Oxford University Press, 671 pp.
21 Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 991-1007.   DOI
22 Peckham, S., and Coauthors, 2011: WRF-Chem Version 3.3 User's Guide. NOAA Technical Memo., 94 pp.
23 Chang, D. Y., J. Lelieveld, H. Tost, B. Steil, A. Pozzer, and J. Yoon, 2017: Aerosol physicochemical effects on CCN activation simulated with the chemistry-climate model EMAC. Atmos. Environ., 162, 127-140, doi:10.1016/j.atmosenv.2017.03.036.   DOI
24 Chapman, E. G., W. I. Gustafson Jr., J. C. Barnard, S. J. Ghan, M. S. Pekour, and J. D. Fast, 2009: Coupling aerosol-cloud-radiative processes in the WRF-Chem model: Investigating the radiative impact of large point sources. Atmos. Chem. Phys., 9, 945-964.   DOI
25 Chuang, C. C., J. E. Penner, K. E. Taylor, A. S. Grossman, and J. J. Walton, 1997: An assessment of the radiative effects of anthropogenic sulphate. J. Geophys. Res., 102, 3761-3778.   DOI
26 Chylek, P. and J. G. D. Wong, 1998: Erroneous use of the modified Köhler equation in cloud and aerosol physics applications. J. Atmos. Sci., 55, 1473-1477.   DOI
27 Clark, A. J., and Coauthors, 2012: An overview of the 2010 hazardous weather testbed experimental forecast program spring experiment. Bull. Amer. Meteor. Soc., 93, 55-74, doi:10.1175/BAMS-D-11-00040.1.   DOI
28 Fast, J. D., W. I. Gustafson Jr., R. C. Easter, R. A. Zaveri, J. C. Barnard, E. G. Chapman, G. A. Grell, and S. E. Peckham, 2006: Evolution of ozone, particulates, and aerosol direct forcing in an urban area using a new fully-coupled meteorology, chemistry, and aerosol model. J. Geophys. Res., 111, D21305.
29 Petters, M. D., and S. M. Kreidenweis, 2007: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys., 7, 1961-1971.   DOI
30 Pringle, K. J., H. Tost, A. Pozzer, U. Pöschl, and J. Lelieveld, 2010: Global distribution of the effective aerosol hygroscopicity parameter for CCN activation. Atmos. Chem. Phys., 10, 5241-5255, doi:10.5194/acpd-10-6301-2010.   DOI
31 Pringle, K. J., K. S. Carslaw, D. V. Spracklen, G. M. Mann, and M. P. Chipperfield, 2009: The relationship between aerosol and cloud drop number concentrations in a global aerosol microphysics model. Atmos. Chem. Phys., 9, 4131-4144.   DOI
32 Ghan, S. J., L. R. Leung, R. C. Easter, and H. Abdul-Razzak, 1997: Prediction of cloud droplet number in a general circulation model. J. Geophys. Res., 102, 21777-21794.   DOI
33 Ghan, S. J., and Coauthors, 2011: Droplet nucleation: Physically based parameterizations and comparative evaluation. J. Adv. Model. Earth Syst., 3, M10001, doi:10.1029/2011MS000074.   DOI
34 Pruppacher, H. R., and J. D. Klett, 2010: Microphysics of Clouds and Precipitation. Springer, 954 pp.
35 Reutter, P., H. Su, J. Trentmann, M. Simmel, D. Rose, S. S. Gunthe, H. Wernli, M. O. Andreae, and U. Poschl, 2009: Aerosol and updraft-limited regimes of cloud droplet formation: influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN). Atmos. Chem. Phys., 9, 7067-7080.   DOI
36 Rose, D., S. S. Gunthe, E. Mikhailov, G. P. Frank, U. Dusek, M. O. Andreae, and U. Poschl, 2008: Calibration and measurement uncertainties of a continuousflow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment. Atmos. Chem. Phys., 8, 1153-1179.   DOI
37 Rose, D., A. Nowak, P. Achtert, A. Wiedensohler, M. Hu, M. Shao, Y. Zhang, M. O. Andreae, and U. Poschl, 2010: Cloud condensation nuclei in polluted air and biomass burning smoke near the megacity Guangzhou, China Part 1: Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity. Atmos. Chem. Phys., 10, 3365-3383, doi:10.5194/acp-10-3365-201.   DOI
38 Grell, G. A. and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693-1696.
39 Grell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock, and B. Eder, 2005: Fully coupled "online" chemistry within the WRF model. Atmos. Environ., 39, 6957-6975.   DOI
40 Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron, 2006: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys., 6, 3181-3210.   DOI
41 Gunthe, S. S., and Coauthors, 2009: Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity. Atmos. Chem. Phys., 9, 7551-7575.   DOI
42 Hanel, G., 1976: The properties of atmospheric aerosol particles as a function of relative humidity at thermodynamic equilibrium with the surrounding moist air. Adv. Geophys., 19, 73-188.
43 Schell, B., I. J. Ackermann, H. Hass, F. S. Binkowski, and A. Ebel, 2001: Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. J. Geophys. Res., 106, 28275-28293.   DOI
44 Seinfeld, J. H., and S. N. Pandis, 2006: Atmospheric Chemistry and Physics. John Wiley and Sons, 1232 pp.
45 Snider, G., and Coauthors, 2016: Variation in global chemical composition of PM2.5: emerging results from SPARTAN. Atmos. Chem. Phys., 16, 9629-9653, doi:10.5194/acp-16-9629-201.   DOI
46 Hewitt, H. T., D. Copsey, I. D. Culverwell, C. M. Harris, R. S. R. Hill, A. B. Keen, A. J. McLaren, and E. C. Hunke, 2011: Design and implementation of the infrastructure of HadGEM3: the next generation Met Office climate modelling system. Geosci. Model Dev., 4, 223-253, doi:10.5194/gmd-4-223-2011.   DOI
47 Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341.   DOI
48 Goliff, W. S., W. R. Stockwell, and C. V. Lawson, 2013: The regional atmospheric chemistry mechanism, version 2. Atmos. Environ., 68, 174-185, doi:10.1016/j.atmosenv.2012.11.038.   DOI
49 Wang, M., and J. E. Penner, 2009: Aerosol indirect forcing in a global model with particle nucleation. Atmos. Chem. Phys., 9, 239-260.   DOI
50 Wang, W., H. Lu, T. Zhao, L. Jiang, and J. Shi, 2017: Evaluation and comparison of daily rainfall from latest GPM and TRMM products over the Mekong River Basin. IEEE, 10, 2540-2549, doi:10.1109/JSTARS.2017.2672786.   DOI
51 West, R. E. L., P. Stier, A. Jones, C. E. Johnson, G. W. Mann, N. Bellouin, D. G. Partridge, and Z. Kipling, 2014: The importance of vertical velocity variability for estimates of the indirect aerosol effects. Atmos. Chem. Phys., 14, 6369-6393, doi:10.5194/acp-14-6369-2014.   DOI
52 Wex, H., A. Kiselev, F. Stratmann, J. Zoboki, and F. Brechtel, 2005: Measured and modeled equilibrium sizes of NaCl and (NH4)2SO4 particles at relative humidities up to 99.1%. J. Geophys. Res., 110, D21212.
53 Zhang, M., J. M. Chen, T. Wang, T. T. Cheng, L. Lin, R. S. Bhatia, and M. Hanvey, 2010: Chemical characterization of aerosols over the Atlantic Ocean and the Pacific Ocean during two cruises in 2007 and 2008. J. Geophys. Res., 115, D22302, doi:10.1029/2010JD014246.   DOI
54 Snider, J. R., and M. D. Petters, 2008: Optical particle counter measurement of marine aerosol hygroscopic growth. Atmos. Chem. Phys., 8, 1949-1962.   DOI
55 Spracklen, D. V., and Coauthors, 2008: Contribution of particle formation to global cloud condensation nuclei concentrations. Geophys. Res. Lett., 35, L06808.
56 Squires, P., 1958: The microstructure and colloidal stability of warm clouds: II. The causes of the variations in microstructure. Tellus, 10, 262-271.
57 Svenningsson, B., and Coauthors, 2006: Hygroscopic growth and critical supersaturations for mixed aerosol particles of inorganic and organic compounds of atmospheric relevance. Atmos. Chem. Phys., 6, 1937-1952.   DOI
58 Tewari, M., and Coauthors, 2004: Implementation and verification of the unified NOAH land surface model in the WRF model. 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, 11-15.
59 Twomey, S., 1959: The nuclei of natural cloud formation: II. The supersaturation in natural clouds and the variation of cloud droplet concentration. Geophys. Pure Appl., 43, 243-249.   DOI
60 Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 1149-1154.   DOI
61 Zieger, P., and Coauthors, 2017: Revising the hygroscopicity of inorganic sea salt particles. Nat. Commun., 8, 15833, doi:10.1038/ncomms15883.   DOI
62 Von der Emde, K., and U. Wacker, 1993: Comments on the relationship between aerosol spectra, equilibrium drop size spectra, and CCN spectra. Beit. Phys. Atmos., 66, 157-162.