• Title/Summary/Keyword: species-specific primer

Search Result 332, Processing Time 0.029 seconds

Identification of Potential Species-Specific Marker in Several Fish Species by RAPD Using Universal Rice Primers (Universal Rice Primer (URP)-RAPD 방법에 의한 어류 종 특이 marker의 동정)

  • KIM Woo-Jin;KIM Kyung-Kil;LEE Jeong-Ho;PARK Doo-Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.3
    • /
    • pp.317-320
    • /
    • 2003
  • Morphologically similar fish species were subjected to the random amplified polymorphic DNA (RAPD) analysis using universal rice primer (URP). The fish species tested were sea basses (Lateolabrax japonicus and L. maculatus), eels (Anguilla japonica, A. bicolor bicolor, A. rostrata, and A. anguilla), and flounders (Limanda yokohamae and L. herzensteinin). Highly reproducible RAPD patterns were observed with several potential species-specific markers. The results indicate that RAPD technique using URP is useful for distinguishing fish psecies in a rapid manner.

Reevaluation of the Change of Leuconostoc Species and Lactobacillus plantarum by PCR During Kimchi Fermentation

  • Choi, Jae-Yeon;Kim, Min-Kyun;Lee, Jong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.166-171
    • /
    • 2002
  • The genus Leuconostoc is generally recognized as a favorable microorganism associated with a good taste of Kimchi and Lactobacillus plantarum is responsible for the overripening and acidification of Kimchi. A rapid and reliable PCR-based method to monitor the change of these lactic acid bacterial populations during Kimchi fermentation was attempted. A Leuconostoc-specific primer set was chosen from the conserved sequences of 16S rRNA genes among Leuconostoc species. The Lb. plantarum-specific primer set was the internal segments of a Lb. plantarum-specific probe which was isolated after randomly amplified polymorphic DNA (RAPD) analysis and tested for identification. The specificity of this protocol was examined in DNA samples isolated from a single strain. In agarose gel, as little as 10 pg of template DNA could be used to visualize the PCR products, and quantitative determination was possible at the levels of 10 pg to 100 ng template DNA. For the semi-quantitative determination of microbial changes during Kimchi fermentation, total DNAs from the 2 h-cultured microflora of Kimchi were extracted for 16 days and equal amounts of DNA templates were used for PCR. The intensities of DNA bands obtained from PCR using Leuconostoc-specific and Lb. plantarum-specific primer sets marked a dramatic contrast at the 1 ng and 100 ng template DNA levels during Kimchi fermentation, respectively. As the fermentation proceeded, the intensity of the band for Leuconostoc species increased sharply until the 5th day and the levels was maintained until the 11 th day. The sharp increase for Lb. plantarum occurred after 11 days with the decrease of Leuconostoc species. The results of this study indicate that Leuconostoc species were the major microorganisms at the beginning of Kimchi fermentation and reach their highest population during the optimum ripening period of Kimchi.

PCR Based Detection of Phellinus linteus using Specific Primers Generated from Universal Rice Primer(URP) Derived PCR Polymorphic Band

  • Kang, Hee-Wan;Park, Dong-Suk;Park, Young-Jin;Lee, Byoung-Moo;Cho, Soo-Muk;Kim, Ki-Tae;Seo, Geon-Sik;Go, Seung-Joo
    • Mycobiology
    • /
    • v.30 no.4
    • /
    • pp.202-207
    • /
    • 2002
  • This study was carried out to develop specific primers for PCR detection of Phellinus linteus. Diverse genomes of 15 Phellinus spp. including five Phellinus linteus isolates were fingerprinted by Primer Universal rice primer(URP)1F. The URP-PCR pattern differentiated P. linteus isolates from other phellinus spp. A polymorphic band(2.8 kb), which is unique for P. linteus isolates, was isolated and sequenced. Twenty four-oligonucleotide primer pairs were designed based on information of DNA sequence. The primer set(PLSPF2/PLSPR1) amplified single band(2.2 kb) of expected size with genomic DNA from seven Phellinus linteus, but not with that of other Phellinus species tested. The primers could be used identically in both DNA samples from mycelium and fruit bodies. This specific primers could offer a useful tool for detecting and identifying P. linteus rapidly.

Discrimination of Bacillus anthracis from Bacillus cereus Group Using KHT5 Marker (KHT5 마커를 사용한 Bacillus cereus 그룹에서 Bacillus anthracis의 구별)

  • 김형태;김성주;채영규
    • Korean Journal of Microbiology
    • /
    • v.39 no.1
    • /
    • pp.40-44
    • /
    • 2003
  • Bacillus anthracis is a gram-positive spore-forming bacterium that causes the disease anthrax. In order to develop a DNA marker specific for Bacillus anthracis and to discriminate this species from Bacillus cereus group, we applied the randomly amplified polymorphic DNA (RAPD)-PCR technique to a collection of 29 strains of the genus Bacillus, including 22 species of the B. cereus group. A 709-bp RAPD marker (KHT5) specific for B. anthracis was obtained from B. anthracis BAK. The PCR product of internal primer set from the KHT5 fragment distinguished B. anthracis from the other species of the B. cereus group.

Developing species-specific quantitative real-time polymerase chain reaction primers for detecting Lautropia mirabilis

  • Park, Soon-Nang;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.46 no.3
    • /
    • pp.140-145
    • /
    • 2021
  • This study aimed to develop Lautropia mirabilis-specific quantitative real-time polymerase chain reaction (qPCR) primers based on the sequence of DNA-directed RNA polymerase subunit beta gene. The PrimerSelect program was used in designing of the qPCR primers, RTLam-F4 and RTLam-R3. The specificity of the qPCR primers were performed by conventional PCR with 37 strains of 37 oral bacterial species, including L. mirabilis. The sensitivity of the primers was determined by qPCR with the serial dilution of purified genomic DNA of L. mirabilis KCOM 3484, ranged from 4 ng to 4 fg. The data showed that the qPCR primers could detect only L. mirabilis strains and as little as 40 fg of genome DNA of L. mirabilis KCOM 3484. These results indicate that this qPCR primer pair (RTLam-F4/RTLam-R3) may be useful for species-specific detection of L. mirabilis in epidemiological studies of oral bacterial infectious diseases such as periodontal disease.

Sensitive, Accurate PCR Assays for Detecting Harmful Dinoflagellate Cochlodinium polykrikoides Using a Specific Oligonucleotide Primer Set

  • Kim Chang-Hoon;Park Gi-Hong;Kim Keun-Yong
    • Fisheries and Aquatic Sciences
    • /
    • v.7 no.3
    • /
    • pp.122-129
    • /
    • 2004
  • Harmful Cochlodinium polykrikoides is a notorious harmful algal bloom (HAB) species that is causing mass mortality of farmed fish along the Korean coast with increasing frequency. We analyzed the sequence of the large subunit (LSD) rDNA D1-D3 region of C. polykrikoides and conducted phylogenetic analyses using Bayesian inference of phylogeny and the maximum likelihood method. The molecular phylogeny showed that C. polykrikoides had the genetic relationship to Amphidinium and Gymnodinium species supported only by the relatively high posterior probabilities of Bayesian inference. Based on the LSU rDNA sequence data of diverse dinoflagellate taxa, we designed the C. polykrikoides-specific PCR primer set, CPOLY01 and CPOLY02 and developed PCR detection assays for its sensitive, accurate HAB monitoring. CPOLY01 and CPOLY02 specifically amplified C. polykrikoides and did not cross-react with any dinoflagellates tested in this study or environmental water samples. The effective annealing temperature $(T_{p})$ of CPOLY01 and CPOLY02 was $67^{\circ}C$. At this temperature, the conventional and nested PCR assays were sensitive over a wide range of C. polykrikoides cell numbers with detection limits of 0.05 and 0.0001 cells/reaction, respectively.

Analysis of Genetic Relationship Among Native Taraxacum and Naturalized Taraxacum species using RAPD (RAPD를 이용한 자생 민들레 종과 귀화 민들레 종간의 연관계 분석)

  • 안영희;박대식;정규환
    • Korean Journal of Environment and Ecology
    • /
    • v.17 no.2
    • /
    • pp.169-176
    • /
    • 2003
  • The genetic relationships between 4 Korean native Taraxacum and 2 naturalized Taraxacum species were analyzed using the random amplified polymorphic DNA (RAPD) method. Because 141 polymorphic bands were generated from 30 random primers selected through the primer screening, it was possible to analyze the genetic relationship among 6 Taraxacum species. In RAED with the primer OPC12, OPD16, OPK16, OPK17, OPK20, OPS1 or OPS8, many specific polymorphic bands have been appeared in each species. Especially RAPD with the primer OPS8, a specific polymorphic band at 564bp was appeared only in the naturalized Taraxacum officinale. Based on RAPD analysis, Korean native Taraxacum and naturalized Taraxacum species are divided into two groups. T. officinale and T. laevigatum are classified into group I which is a naturalized Taraxacum species group, and T. mongolicum, T. hallasanensis, T. ohwianum and T. coreanum are classified into group II which is a Korean native Taraxacum species group. The result from the RAPD method was very similar to the result from the Bootstrap method. From the examination of the physical characteristics of 6 Taraxacum species populated in Korea, flowering period of Taraxacum species in group I are longer than Taraxacum species in group ll, and the direction of involucral bract of Taruxacum species in the group I was also different comparing to the group ll. Because the flowering color, leaf direction, and the specificity of seed germination of T. coreanum were different compared to the other species in the group II, T. coreanum would be genetically divergent and showed the highest dissimilarity index score.

Molecular authentication of Lepidii seu Descurainiae Semen by the development of matK amplification primers and analysis of sequences (matK 증폭용 primer 개발 및 염기서열 분석을 통한 정력자(葶藶子) 유전자 감별)

  • Moon, Byeong Cheol;Kim, Wook Jin;Yang, Sungyu;Park, Inkyu;Yeo, Sang Min;Noh, Pureum
    • The Korea Journal of Herbology
    • /
    • v.33 no.3
    • /
    • pp.25-35
    • /
    • 2018
  • Objectives : Lepidii seu Descurainiae Semen has been frequently adulterated with the seeds of several inauthentic plant species. However, the accurate identification of these plant seeds is very difficult. To develop a reliable genetic authentication tool for Lepidii seu Descurainiae Semen, we analyzed matK sequence. Methods : To obtain the matK sequences of plant materials, genomic DNA was extracted from 24 samples and PCR amplification was carried out using matK-AF/matK-8R universal primer set and matK-LDSF/matK-LDSR primer set. For identifying species-specific nucleotides and phylogenetic analysis, matK regions were sequenced and comparatively analyzed by the ClustalW and Maximum Likelihood method. Results : We developed a new primer set to amplify matK region in Lepidii seu Descurainiae Semen and closely related plant samples. From the comparative analysis of matK sequences, we identified species-specific marker nucleotides for D. sophia, L. apetalum, L. latifolium, E. cheiranthoides, E. macilentum, and D. nemorosa, respectively. Furthermore, phylogenetic analysis revealed clear classification depending on the species. These results indicated that the matK sequence obtained a new primer set in this study was useful to identify Lepidii seu Descurainiae Semen in species level. Conclusions : We developed a primer set and identified species-specific marker nucleotides enough to distinguish authentic Lepidii seu Descurainiae Semen and adulterants at the species level based on the matK sequences. These genetic tool will be useful to prevent adulteration and to standardize the quality of Lepidii seu Descurainiae Semen.

Specific Detection of Root Rot Pathogen, Cylindrocarpon destructans, Using Nested PCR from Ginseng Seedlings (Nested PCR 기법을 이용한 인삼 뿌리썩음병원균의 특이적 검출)

  • Jang, Chang-Soon;Lee, Jung-Ju;Kim, Sun-Ick;Song, Jeong-Young;Yoo, Sung-Joon;Kim, Hong-Gi
    • Research in Plant Disease
    • /
    • v.11 no.1
    • /
    • pp.48-55
    • /
    • 2005
  • Cylindrocarpon destructans is a soil-borne plant pathogenic fungus causing root rot on ginseng and trees. Rapid and exact detection of this pathogen was practiced on ginseng seedlings by nested PCR using speciesspecific primer set. The second round of PCR amplification by Dest 1 and Dest 4 primer set formed 400 bp of species-specific fragment of C. destructans from the product of first round of amplification by ITS 1 and ITS 4 primer set. In the PCR sensitivity test based on DNA density, nested PCR detected to the limit of one fg and it meant the nested PCR could detect up to a few spores of C. destructans. Also, nested PCR made it possible to detect the pathogen from ginseng seedlings infected by replantation on artificial infested soil. Our nested PCR results using species-specific primer set could be utilized for diagnosis of root rot disease in ginseng cultivation.

Molecular Detection of Harmful Dinoflagellates (Dinophyceae) in Ballast Water (선박평형 수 내 유해 와편모조류(Dinophyceae)의 분자생물학적 검출)

  • Park, Tae-Gyu;Kim, Sung-Yeon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.1
    • /
    • pp.36-40
    • /
    • 2010
  • Ballast water has been known as a major vector for global dispersal of toxic dinoflagellates and other microalgae. In this study, biodiversity in ships’ ballast water was examined using a dinoflagellate-oriented PCR primer set and species-specific real-time PCR. While motile dinoflagellates could be observe at very low cell densities by light microscopy,a wide range of dinoflagellate taxa including parasitic and phototrophic pico-dinoflagellates as well as harmful species to marine fish/shellfish was detected when techniques for cloning/sequencing of SSU rDNA of sample cells were used. Present result suggests that molecular methods including species-specific PCR primers may offer rapid and accurate detection of invasive species in ballast water.