DOI QR코드

DOI QR Code

Molecular Detection of Harmful Dinoflagellates (Dinophyceae) in Ballast Water

선박평형 수 내 유해 와편모조류(Dinophyceae)의 분자생물학적 검출

  • Park, Tae-Gyu (Aquaculture Environment Institute, National Fisheries Research and Development Institute (NFRDI)) ;
  • Kim, Sung-Yeon (Aquaculture Environment Institute, National Fisheries Research and Development Institute (NFRDI))
  • 박태규 (국립수산과학원 양식환경연구소) ;
  • 김성연 (국립수산과학원 양식환경연구소)
  • Received : 2010.01.17
  • Accepted : 2010.02.26
  • Published : 2010.02.28

Abstract

Ballast water has been known as a major vector for global dispersal of toxic dinoflagellates and other microalgae. In this study, biodiversity in ships’ ballast water was examined using a dinoflagellate-oriented PCR primer set and species-specific real-time PCR. While motile dinoflagellates could be observe at very low cell densities by light microscopy,a wide range of dinoflagellate taxa including parasitic and phototrophic pico-dinoflagellates as well as harmful species to marine fish/shellfish was detected when techniques for cloning/sequencing of SSU rDNA of sample cells were used. Present result suggests that molecular methods including species-specific PCR primers may offer rapid and accurate detection of invasive species in ballast water.

선박평형 수는 유독 와편모조류 및 다양한 미세조류의 국제적인 이동경로로 알려져 있다. 본 연구에서는 선박평형 수에 있는 와편모조류의 다양성을 조사하기 위하여 와편모조류 특이적인 PCR primer와 종 특이적인 real-time PCR 유전자 탐침자를 이용하였다. 선박평형 수 시료에 대한 광학현미경 조사에서는 와편모조류가 매우 낮은 농도로 관찰되었지만, SSU rDNA의 cloning 및 염기서열 분석 결과에서는 기생 와편모조류, 초미세플랑크톤, 어패류 폐사 원인종 등 다양한 종류가 확인되었다. 본 연구 결과는 종 톡이적 PCR primer와 같은 분자생물학적 방법이 선박 평형 수에 외래 유입종의 신속 정확한 진단에 유용함을 보여주고 있다.

Keywords

References

  1. Bolch, C.J.S. and de Salas, M.F., 2007. A review of the molecular evidence for ballast water introduction of the toxic dinoflagellates Gymnodinium catenatum and the Alexandrium "tamarensiscomplex" to Australasia. Harmful Algae 6: 465-485. https://doi.org/10.1016/j.hal.2006.12.008
  2. Botes, L., Smit, A.J. and Cook, P.A., 2002. The potential threat of algal blooms to the abalone (Haliotis midae) mariculture industry situated around the South African coast. Harmful Algae 2: 247-259.
  3. Burkholder, J.M., Hallegraeff, G.M., Melia, G., Cohen, A., Bowers, H.A., Oldach, D.W., Matthew, W.P., Sullivan, M.J., Zimba, P.V., Aien, E.H., Kinder, C.A. and Mallin, M.A., 2007. Phytoplankton and bacterial assemblages in ballast water of U.S. military ships as a function of port of origin, voyage time, and ocean exchange practices. Harmful Algae 6: 486-518. https://doi.org/10.1016/j.hal.2006.11.006
  4. Doblin, M.A., Popels, L.C., Coyne, K.J., Hutchins, D.A., Cary, S.C. and Dobbs, F.C., 2004. Transport of the harmful bloom alga Aureococcusano phagefferens by ocean going ships and coastal boasts. Appl. Environ. Microbiol. 70: 6495-6500. https://doi.org/10.1128/AEM.70.11.6495-6500.2004
  5. Hallegraeff, G.M. and Bolch, C.J., 1992. Transport of diatom and dinoflagellate resting spores in ships' ballast water: implications for plankton biogeography and aquaculture. J. Plankton Res. 14: 1067-1084. https://doi.org/10.1093/plankt/14.8.1067
  6. Huber, T., Faulkner G. and Hugenholtz P., 2004. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20: 2317-2319. https://doi.org/10.1093/bioinformatics/bth226
  7. Lin, S., Zhang, H., Hou, Y., Miranda, L. and Bhattacharya, D., 2006. Development of a dinoflagellate-oriented PCR primer set leads to detection of picoplanktonic dinoflagellates from Long Island Sound. Appl. Environ. Microbiol. 72: 5626-5630. https://doi.org/10.1128/AEM.00586-06
  8. Litaker, R.W., Vandersea, M.W., Kibler, S.R., Reece, K.S., Stokes, N.A., Steidinger, K.A., Millie, D.F., Bendis, B.J., Pigg, R.J. and Tester, P.A., 2003. Identification of Pfiesteria piscicida (Dinophyceae) and Pfiesteria-like organisms using internal transcribed spacer-specific PCR assays. J. Phycol. 39: 754-761. https://doi.org/10.1046/j.1529-8817.2003.02112.x
  9. Lopez-Garcia, P., Rodriguez-Valera, F., Pedros-Allo, C. and Moreira, D., 2001. Unexpected diversity of small eukaryotes in deep-sea Antarctic plakton. Nature 409: 603-607. https://doi.org/10.1038/35054537
  10. Park, T.G., Park, Y.T. and Lee, Y., 2009. Development of a SYTO9 based real-time PCR probe for detection and quantification of toxic dinoflagellate Karlodinium veneficum(Dinophyceae) in environmental samples Phycologia 48: 32-43. https://doi.org/10.2216/08-52.1
  11. Place, A.R., Saito, K., Deeds, J.R., Robledo, J.A.F. and Vasta, G.R., 2008. A decade of research on Pfiesteria spp. and their toxins: unresolved questions and an alternative hypothesis. InBotana, L.M.(Eds) Seafood and freshwater toxins. CRC Press, New York, pp. 717-751.
  12. Posada, D. and Crandall, K.A., 1998. Modeltest: testing the model of DNA substation. Bioinfomatics 14: 817-818. https://doi.org/10.1093/bioinformatics/14.9.817
  13. Smayda, T.J., 2007. Reflections on the ballast water dispersal- harmful algal bloom paradigm. Harmful Algae 6: 601-22. https://doi.org/10.1016/j.hal.2007.02.003
  14. Swofford, D.L., 1999. PAUP*. Phylogenetic analysis using parsimony (and other methods). Version 4.0. Sinauer Associates, Sunderland, MA.
  15. Thompson, J.D., Gibson, T.J., Plewnaik, F., Jeanmougin, F. and Higgins, D.G., 1997. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882. https://doi.org/10.1093/nar/25.24.4876