• Title/Summary/Keyword: spatially -variable

Search Result 82, Processing Time 0.025 seconds

Criteria for processing response-spectrum-compatible seismic accelerations simulated via spectral representation

  • Zerva, A.;Morikawa, H.;Sawada, S.
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.341-363
    • /
    • 2012
  • The spectral representation method is a quick and versatile tool for the generation of spatially variable, response-spectrum-compatible simulations to be used in the nonlinear seismic response evaluation of extended structures, such as bridges. However, just as recorded data, these simulated accelerations require processing, but, unlike recorded data, the reasons for their processing are purely numerical. Hence, the criteria for the processing of acceleration simulations need to be tied to the effect of processing on the structural response. This paper presents a framework for processing acceleration simulations that is based on seismological approaches for processing recorded data, but establishes the corner frequency of the high-pass filter by minimizing the effect of processing on the response of the structural system, for the response evaluation of which the ground motions were generated. The proposed two-step criterion selects the filter corner frequency by considering both the dynamic and the pseudo-static response of the systems. First, it ensures that the linear/nonlinear dynamic structural response induced by the processed simulations captures the characteristics of the system's dynamic response caused by the unprocessed simulations, the frequency content of which is fully compatible with the target response spectrum. Second, it examines the adequacy of the selected estimate for the filter corner frequency by evaluating the pseudo-static response of the system subjected to spatially variable excitations. It is noted that the first step of this two-fold criterion suffices for the establishment of the corner frequency for the processing of acceleration time series generated at a single ground-surface location to be used in the seismic response evaluation of, e.g. a building structure. Furthermore, the concept also applies for the processing of acceleration time series generated by means of any approach that does not provide physical considerations for the selection of the corner frequency of the high-pass filter.

Strength Prediction of Spatially Reinforced Composites (공간적으로 보강된 복합재료의 강도예측)

  • 유재석;장영순;이상의;김천곤
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.39-46
    • /
    • 2004
  • In this study, the strength of spatially reinforced composites (SRC) are predicted by using stiffness reduction for each structural element composed of a rod stiffness in each direction and a matrix stiffness proportional to its rod volume fraction. Maximum failure strain criteria is applied to rod failure, and modified Tsai-Wu failure criteria to matrix failure. The material properties composed of the tensile failure strain of a rod, the compressive failure strain of 3D SRC, the tensile and compressive strength of the 3D SRC in the $45^{\cir}$ rotated direction from a rod and the shear strength of the 3D SRC are measured to predict the SRC strength. The strength distributions of the 3D/4D SRC in rod and off-rod direction have the largest and the smallest values, respectively. A variable load step is selected to increase an efficiency of strength distribution calculation. Uniform load step is applied when a load history is needed. The results of compressive strength from analysis and experiment show the 18 % difference though the initial slop is coincident with each other.

Inhomogeneous Helmholtz equation for Water Waves on Variable Depth (비균질 Helmholtz 방정식을 이용한 변동 수심에서의 파랑변형)

  • Kim, Hyo-Seob;Jang, Chang-Hwan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.174-180
    • /
    • 2010
  • The inhomogeneous Helmholtz equation is introduced for variable water depth and potential function and separation of variables are introduced for the derivation. Only harmonic wave motions are considered. The governing equation composed of the potential function for irrotational flow is directly applied to the still water level, and the inhomogeneous Helmholtz equation for variable water depth is obtained. By introducing the wave amplitude and wave phase gradient the governing equation with complex potential function is transformed into two equations of real variables. The transformed equations are the first and second-order ordinary differential equations, respectively, and can be solved in a forward marching manner when proper boundary values are supplied, i.e. the wave amplitude, the wave amplitude gradient, and the wave phase gradient at a side boundary. Simple spatially-centered finite difference numerical schemes are adopted to solve the present set of equations. The equation set is applied to two test cases, Booij’ inclined plane slope profile, and Bragg’ wavy bed profile. The present equations set is satisfactorily verified against other theories including the full linear equation, Massel's modified mild-slope equation, and Berkhoff's mild-slope equation etc.

Species-specific biomass drives macroalgal benthic primary production on temperate rocky reefs

  • Spector, Michael;Edwards, Matthew S.
    • ALGAE
    • /
    • v.35 no.3
    • /
    • pp.237-252
    • /
    • 2020
  • Temperate rocky reefs dominated by the giant kelp, Macrocystis pyrifera, support diverse assemblages of benthic macroalgae that provide a suite of ecosystem services, including high rates of primary production in aquatic ecosystems. These forests and the benthic macroalgae that inhabit them are facing both short-term losses and long-term declines throughout much of their range in the eastern Pacific Ocean. Here, we quantified patterns of benthic macroalgal biomass and irradiance on rocky reefs that had intact kelp forests and nearby reefs where the benthic macroalgae had been lost due to deforestation at three sites along the California, USA and Baja California, MEX coasts during the springs and summers of 2017 and 2018. We then modeled how the loss of macroalgae from these reefs impacted net benthic productivity using species-specific, mass-dependent rates of photosynthesis and respiration that we measured in the laboratory. Our results show that the macroalgal assemblages at these sites were dominated by a few species of stipitate kelps and fleshy red algae whose relative abundances were spatially and temporally variable, and which exhibited variable rates of photosynthesis and respiration. Together, our model estimates that the dominant macroalgae on these reefs contribute 15 to 4,300 mg C m-2 d-1 to net benthic primary production, and that this is driven primarily by a few dominant taxa that have large biomasses and high rates of photosynthesis and / or respiration. Consequently, we propose that the loss of these macroalgae results in the loss of an important contribution to primary production and overall ecosystem function.

Reliability analysis-based safety factor for stability of footings on frictional soils

  • Parviz Tafazzoli Moghaddam;Pezhman Fazeli Dehkordi;Mahmoud Ghazavi
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.543-552
    • /
    • 2023
  • The design of foundations based on a deterministic approach may not be safe and reliable occasionally, since soils sometimes show considerable spatial variability, and thus, significant uncertainties in turn affect the estimation of footing bearing capacity. The design of footing on cohesionless stratums on the basis of reliability analysis has not received much attention. This paper performs two-dimensional random finite difference analyses of shallow strip footings on a spatially variable frictional soil considering correlation structure. Friction angle (ϕ) is considered as a log-normally distributed random variable and Monte Carlo Simulation is then performed to determine the statistical response based on the random fields. A new approach reliability-based safety factor is defined based on various reliability levels by considering the coefficient of variation of ϕ and correlation length in both the horizontal and vertical directions. The comparison of the probabilistic safety factor and the conventional one illustrates the limitations of the deterministic safety factor and provides insight into how the heterogeneity of soils properties affects the required safety factor. Results show that the conventional safety factor of 3 can be conservative in some cases, especially for soil with low values of mean ϕ and COVϕ.

A Study of Performance Monitoring and Diagnosis Method for Multivariable MPC Systems

  • Lee, Seung-Yong;Youm, Seung-Hun;Lee, Kwang-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2612-2616
    • /
    • 2003
  • Method for performance monitoring and diagnosis of a MIMO control system has been studied aiming at application to model predictive control (MPC) for industrial processes. The performance monitoring part is designed on the basis of the traditional SPC/SQC method. To meet the underlying premise of Schwart chart observation that the observed variable should be univariate and independent, the process variables are decorrelated temporally as well as spatially before monitoring. The diagnosis part was designed to identify the root of performance degradation among the controller, process, and disturbance. For this, a method to estimate the model-error and disturbance signal has been devised. The proposed methods were evaluated through numerical examples.

  • PDF

Use of Geographic Information System Tools for Improving Mobile Source Atrmospheric Emission Inventories

  • Shin, Tae-joo
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.3
    • /
    • pp.143-150
    • /
    • 1999
  • Mobile source emissions are important inputs to photochemical air quality models. Since most mobile source emissions are calculated at the county-level, these emission should be geographically allocated to the computational grid cells of a photochemical air quality model prior to running the model. The traditional method for the spatial allocation of these emissions has been to use a "spatial surrogate indicator" such as population, since grid-specific emission calculations are very labor-intensive and expensive, plus the necessary data are often not available for such grid resolutions. Accordingly, new spatial surrogate indicators for mobile source emissions(specifically for highway emissions) were developed using Geographic Information Systems(GIS) tools due to the spatially variable nature of mobile source emissions. These newly developed spatial surrogate indicators appear to be more appropriate for the allocation of highway emissions than the population surrogate indicator. It was also revealed that the conventional spatial allocation method underestimates the maximum levels of air pollutant emmissions.mmissions.

  • PDF

Use of Geographic Information System Tools for Improving Atmospheric Emission Inventories of Biogenic Source

  • Shin, Tae-joo
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.3
    • /
    • pp.151-158
    • /
    • 1999
  • Biogenic source emissions refer to naturally occuring emissions from vegetation, microbial activities in soil, lightening, and so on. Vegetation is especially known to emit a considerable amout of volatile organic compounds into the atmosphere. Therefore, biogenic source emissions are an important input to photochemical air quality models. since most biogenic source emissions are calculated at the county-level, they should be geographically allocated to the computational grid cells of a photochemical air quality model prior to running the model. The traditional method for the spatial allocation for biogenic source emissions has been to use a "spatial surrogate indicator" such as a county area. In order to examine the applicability of such approximations, this study developed more detailed surrogate indicators to improve the spatial allocation method for biogenic source emissions. Due to the spatially variable nature of biogenic source emissions, Geographic Information Systems(GIS) were introduced as new tools to develop more detailed spatial surrogate indicators. Use of these newly developed spatial surrogate indicators for biogenic source emission allocation provides a better resolution than the standard spatial surrogate indicator.indicator.

  • PDF

Application of k-w turbulence model to the analysis of the flow through a single stage axial-flow compressor (단단 축류압축기 유동해석에 대한 k-w 난류모델의 응용)

  • Lee, Joon-Suk;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.3 s.8
    • /
    • pp.7-11
    • /
    • 2000
  • A numerical study based on the three-dimensional thin-layer Navier-Stokes solver is carried out to analyze the flowfield through a single stage transonic compressor. Explicit fout-step Runge-Kutta scheme with spatially variable time step and implicit residual smoothing is used. The governing equations we discretized with explcit finite difference method. Mired-out average method is used at the interface between rotor and stator. And, an artificial dissipation model is used to assure the stability of solution. The results with k-w turbulence model were compared to the results with Baldwin-Lomax model, and physical phenomena of transonic compressor are presented. The two turbulence models give the results that show reasonably good agreements with experimental data.

  • PDF

Application of k-w turbulence model to the analysis of the flow through a single stage axial-flow compressor (단단 축류압축기 유동해석에 대한 k-w 난류모델의 응용)

  • Lee, Joon-Suk;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.27-32
    • /
    • 1999
  • A numerical study based on the three-dimensional thin-layer Navier-Stokes solver is carried out to analyze the flowfield through a single stage transonic compressor. Explicit four-step Runge-Kutta scheme with spatially variable time step and implicit residual smoothing is used. The governing equations are discretized with exploit finite difference method. Mixed-out average method is used at the interface between rotor and stator. And, an artificial dissipation model is used to assure the stability of solution. The results with k-$\omega$ turbulence model were compared to the results with Baldwin-Lomax model, and physical phenomena of transonic compressor are presented. The two turbulence models give the results that show reasonably good agreements with experimental data.

  • PDF