Browse > Article
http://dx.doi.org/10.4490/algae.2020.35.8.19

Species-specific biomass drives macroalgal benthic primary production on temperate rocky reefs  

Spector, Michael (Department of Biology, San Diego State University)
Edwards, Matthew S. (Department of Biology, San Diego State University)
Publication Information
ALGAE / v.35, no.3, 2020 , pp. 237-252 More about this Journal
Abstract
Temperate rocky reefs dominated by the giant kelp, Macrocystis pyrifera, support diverse assemblages of benthic macroalgae that provide a suite of ecosystem services, including high rates of primary production in aquatic ecosystems. These forests and the benthic macroalgae that inhabit them are facing both short-term losses and long-term declines throughout much of their range in the eastern Pacific Ocean. Here, we quantified patterns of benthic macroalgal biomass and irradiance on rocky reefs that had intact kelp forests and nearby reefs where the benthic macroalgae had been lost due to deforestation at three sites along the California, USA and Baja California, MEX coasts during the springs and summers of 2017 and 2018. We then modeled how the loss of macroalgae from these reefs impacted net benthic productivity using species-specific, mass-dependent rates of photosynthesis and respiration that we measured in the laboratory. Our results show that the macroalgal assemblages at these sites were dominated by a few species of stipitate kelps and fleshy red algae whose relative abundances were spatially and temporally variable, and which exhibited variable rates of photosynthesis and respiration. Together, our model estimates that the dominant macroalgae on these reefs contribute 15 to 4,300 mg C m-2 d-1 to net benthic primary production, and that this is driven primarily by a few dominant taxa that have large biomasses and high rates of photosynthesis and / or respiration. Consequently, we propose that the loss of these macroalgae results in the loss of an important contribution to primary production and overall ecosystem function.
Keywords
benthic production; ecosystem function; kelp forest; macroalgae; primary production;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Duarte, C. M. & Cebrian, J. 1996. The fate of marine autotrophic production. Limnol. Oceanogr. 41:1758-1766.   DOI
2 Ebeling, A. W., Laur, D. R. & Rowley, R. J. 1985. Severe storm disturbances and reversal of community structure in a southern California kelp forest. Mar. Biol. 84:287-294.   DOI
3 Edwards, M., Konar, B., Kim, J. -H., Gabara, S., Sullaway, G., McHugh, T., Spector, M. & Small, S. 2020. Marine deforestation leads to widespread loss of ecosystem function. PLoS ONE 15:e0226173.   DOI
4 Smith, S. V. & Hollibaugh, J. T. 1993. Coastal metabolism and the oceanic organic carbon balance. Rev. Geophys. 31:75-89.   DOI
5 VanMeter, K. & Edwards, M. S. 2013. The effects of mysid grazing on kelp zoospore survival and settlement. J. Phycol. 49:896-901.   DOI
6 Edwards, M. S. 2019. Comparing the impacts of four ENSO events on giant kelp (Macrocystis pyrifera) in the northeast Pacific Ocean. Algae 34:141-151.   DOI
7 Edwards, M. S. 1998. Effects of long-term kelp canopy exclusion on the abundance of the annual alga Desmarestia ligulata (Light F). J. Exp. Mar. Biol. Ecol. 228:309-326.   DOI
8 Edwards, M. S. 2001. Scale-dependent patterns of community regulation in giant kelp forests. Ph.D. dissertation, University of California, Santa Cruz, CA, 140 pp.
9 Edwards, M. S. 2004. Estimating scale-dependency in disturbance impacts: El Ninos and giant kelp forests in the northeast Pacific. Oecologia 138:436-447.   DOI
10 Edwards, M. S. & Estes, J. A. 2006. Catastrophe, recovery and range limitation in NE Pacific kelp forests: a large-scale perspective. Mar. Ecol. Prog. Ser. 320:79-87.   DOI
11 Edwards, M. S. & Hernandez-Carmona, G. 2005. Delayed recovery of giant kelp near its southern range limit in the North Pacific following El Nino. Mar. Biol. 147:273-279.   DOI
12 Wernberg, T., Thomsen, M. S., Tuya, F., Kendrick, G. A., Staehr, P. A. & Toohey, B. D. 2010. Decreasing resilience of kelp beds along a latitudinal temperature gradient: potential implications for a warmer future. Ecol. Lett. 13:685-694.   DOI
13 Vasquez, J. A., Vega, J. A. & Buschmann, A. H. 2006. Long term variability in the structure of kelp communities in northern Chile and the 1997-98 ENSO. In Anderson, R., Brodie, J., Onsoyen, E. & Critchley, A. T. (Eds.) Eighteenth Int. Seaweed Symp. Springer, Dordrecht, pp. 279-293.
14 Ware, C., Dijkstra, J. A., Mello, K., Stevens, A. H., O'Brien, B. & Ikedo, W. 2019. A novel three-dimensional analysis of functional architecture that describes the properties of macroalgae as a refuge. Mar. Ecol. Prog. Ser. 608:93-103.   DOI
15 Wernberg, T., Kendrick, G. A. & Toohey, B. D. 2005. Modification of the physical environment by an Ecklonia radiata (Laminariales) canopy and implications for associated foliose algae. Aquat. Ecol. 39:419-430.   DOI
16 Williams, P. J. B. 1998. The balance of plankton respiration and photosynthesis in the open oceans. Nature 394:55-57.   DOI
17 Wilmers, C. C., Estes, J. A., Edwards, M., Laidre, K. L. & Konar, B. 2012. Do trophic cascades affect the storage and flux of atmospheric carbon? An analysis of sea otters and kelp forests. Front. Ecol. Environ. 10:409-415.   DOI
18 Garcia-Robledo, E. & Corzo, A. 2011. Effects of macroalgal blooms on carbon and nitrogen biogeochemical cycling in photoautotrophic sediments: an experimental mesocosm. Mar. Pollut. Bull. 62:1550-1556.   DOI
19 Estes, J. A., Tinker, M. T., Williams, T. M. & Doak, D. F. 1998. Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science 282:473-476.   DOI
20 Frieder, C. A., Nam, S. H., Martz, T. R. & Levin, L. A. 2012. High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosciences 9:3917-3930.   DOI
21 Graham, M. H. 2004. Effects of local deforestation on the diversity and structure of southern California giant kelp forest food webs. Ecosystems 7:341-357.   DOI
22 Hondolero, D. & Edwards, M. S. 2017. Changes in ecosystem engineers: the effects of kelp forest type on currents and benthic assemblages in Kachemak Bay, Alaska. Mar. Biol. 164:81.   DOI
23 Graham, M. H. & Edwards, M. S. 2001. Statistical significance versus fit: estimating the importance of individual factors in ecological analysis of variance. Oikos 93:505-513.   DOI
24 Hobday, A. J. 2000. Age of drifting Macrocystis pyrifera (L.) C. Agardh rafts in the Southern California Bight. J. Exp. Mar. Biol. Ecol. 253:97-114.   DOI
25 Holbrook, S. J., Carr, M. H., Schmitt, R. J. & Coyer, J. A. 1990. Effect of giant kelp on local abundance of reef fishes: the importance of ontogenetic resource requirements. Bull. Mar. Sci. 47:104-114.
26 Kim, J. -H., Kim, N., Moon, H., Lee, S., Jeong, S. Y., Diaz-Pulido, G., Edwards, M. S., Kang, J. -H., Kang, E. J., Oh, H. -J., Hwang, J. -D. & Kim, I. -N. 2020. Global warming offsets the ecophysiological stress of ocean acidification on temperate crustose coralline algae. Mar. Pollut. Bull. 157:111324.   DOI
27 Jackson, G. A. 1984. Internal wave attenuation by coastal kelp stands. J. Phys. Oceanogr. 14:1300-1306.   DOI
28 Jackson, G. A. 1997. Currents in the high drag environment of a coastal kelp stand off California. Cont. Shelf Res. 17:1913-1928.   DOI
29 Kim, J. -H., Kang, E. J., Edwards, M. S., Lee, K., Jeong, H. J. & Kim, K. Y. 2016. Species-specific responses of temperate macroalgae with different photosynthetic strategies to ocean acidification: a mesocosm study. Algae 31:243-256.   DOI
30 Klinger, T., Chornesky, E. A., Whiteman, E. A., Chan, F., Largier, J. L. & Wakefield, W. W. 2017. Using integrated, ecosystem-level management to address intensifying ocean acidification and hypoxia in the California Current large marine ecosystem. Elem. Sci. Anth. 5:16.   DOI
31 Middelboe, A. L., Sand-Jensen, K. & Binzer, T. 2006. Highly predictable photosynthetic production in natural macroalgal communities from incoming and absorbed light. Oecologia 150:464-476.   DOI
32 Konar, B., Edwards, M. S., Bland, A., Metzger, J., Ravelo, A., Traiger, S. & Weitzman, B. 2017. A swath across the great divide: kelp forests across the Samalga Pass biogeographic break. Cont. Shelf Res. 143:78-88.   DOI
33 Kopczak, C. D., Zimmerman, R. C. & Kremer, J. N. 1991. Variation in nitrogen physiology and growth among geographically isolated populations of the giant kelp, Macrocystis pyrifera (Phaeophyta). J. Phycol. 27:149-158.   DOI
34 Krumhansl, K. A., Okamoto, D. K., Rassweiler, A., Novak, M., Bolton, J. J., Cavanaugh, K. C., Connell, S. D., Johnson, C. R., Konar, B., Ling, S. D., Micheli, F., Norderhaug, K. M., Perez-Matus, A., Sousa-Pinto, I., Reed, D. C., Salomon, A. K., Shears, N. T., Wernberg, T., Anderson, R. J., Barrett, N. S., Buschmann, A. H., Carr, M. H., Caselle, J. E., Derrien-Courtel, S., Edgar, G. J., Edwards, M., Estes, J. A., Goodwin, C., Kenner, M. C., Kushner, D. J., Moy, F. E., Nunn, J., Steneck, R. S., Vasquez, J., Watson, J., Witman, J. D. & Byrnes, J. E. K. 2016. Global patterns of kelp forest change over the past half-century. Proc. Natl. Acad. Sci. U. S. A. 113:13785-13790.   DOI
35 Matson, P. G. & Edwards, M. S. 2007. Effects of ocean temperature on the southern range limits of two understory kelps, Pterygophora californica and Eisenia arborea, at multiple life-stages. Mar. Biol. 151:1941-1949.   DOI
36 Metzger, J. R., Konar, B. & Edwards, M. S. 2019. Assessing a macroalgal foundation species: community variation with shifting algal assemblages. Mar. Biol. 166:156.   DOI
37 Miller, R. J., Harrer, S. & Reed, D. C. 2012. Addition of species abundance and performance predicts community primary production of macroalgae. Oecologia 168:797-806.   DOI
38 Bell, T. W., Cavanaugh, K. C., Reed, D. C. & Siegel, D. A. 2015. Geographical variability in the controls of giant kelp biomass dynamics. J. Biogeogr. 42:2010-2021.   DOI
39 Anderson, M. J. 2017. Permutational Multivariate Analyses of Variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online. Available from: https://doi.org/10.1002/9781118445112.stat07841. Accessed Aug 19, 2020.
40 Barron, C. & Duarte, C. M. 2015. Dissolved organic carbon pools and export from the coastal ocean. Global Biogeochem. Cycles 29:1725-1738.   DOI
41 Binzer, T., Sand-Jensen, K. & Middelboe, A. -L. 2006. Community photosynthesis of aquatic macrophytes. Limnol. Oceanogr. 51:2722-2733.   DOI
42 Bodkin, J. L. 1988. Effects of kelp forest removal on associated fish assemblages in central California. J. Exp. Mar. Biol. Ecol. 117:227-238.   DOI
43 Bradley, R. A. & Bradley, D. W. 1993. Wintering shorebirds increase after kelp (Macrocystis) recovery. Condor 95:372-376.   DOI
44 Brown, M. B., Edwards, M. S. & Kim, K. Y. 2014. Effects of climate change on the physiology of giant kelp, Macrocystis pyrifera, and grazing by purple urchin, Strongylocentrotus purpuratus. Algae 29:203-215.   DOI
45 Murie, K. A. & Bourdeau, P. E. 2020. Fragmented kelp forest canopies retain their ability to alter local seawater chemistry. Sci. Rep. 10:11939.   DOI
46 Miller, R. J., Page, H. M. & Reed, D. C. 2015. Trophic versus structural effects of a marine foundation species, giant kelp (Macrocystis pyrifera). Oecologia 179:1199-1209.   DOI
47 Miller, R. J., Reed, D. C. & Brzezinski, M. A. 2011. Partitioning of primary production among giant kelp (Macrocystis pyrifera), understory macroalgae, and phytoplankton on a temperate reef. Limnol. Oceanogr. 56:119-132.   DOI
48 Minich, J. J., Morris, M. M., Brown, M., Doane, M., Edwards, M. S., Michael, T. P. & Dinsdale, E. A. 2018. Elevated temperature drives kelp microbiome dysbiosis, while elevated carbon dioxide induces water microbiome disruption. PLoS ONE 13:e0192772.   DOI
49 Olive, I., Silva, J., Costa, M. M. & Santos, R. 2016. Estimating seagrass community metabolism using benthic chambers: the effect of incubation time. Estuaries and Coasts 39:138-144.   DOI
50 Pfister, C. A., Altabet, M. A. & Weigel, B. L. 2019. Kelp beds and their local effects on seawater chemistry, productivity, and microbial communities. Ecology 100:e02798.
51 R Foundation for Statistical Computing. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from: http://www.R-project.org/. Accessed Aug 19, 2020.
52 Reed, D. C. & Brzezinski, M. A. 2009. Kelp forests. In Laffoley, D. & Grimsditch, G. (Eds.) The Management of Natural Coastal Carbon Sinks. International Union for Conserviation of Nature and Natural Resources, Gland, pp. 31-38.
53 Dayton, P. K., Currie, V., Gerrodette, T., Keller, B. D., Rosenthal, R. & Van Tresca, D. 1984. Patch dynamics and stability of some California kelp communities. Ecol. Monogr. 54:253-289.   DOI
54 Reed, D. C. & Foster, M. S. 1984. The effects of canopy shadings on algal recruitment and growth in a giant kelp forest. Ecology 65:937-948.   DOI
55 Carney, L. T., Bohonak, A. J., Edwards, M. S. & Alberto, F. 2013. Genetic and experimental evidence for a mixedage, mixed-origin bank of kelp microscopic stages in southern California. Ecology 94:1955-1965.   DOI
56 Carr, M. H. 1994. Effects of macroalgal dynamics on recruitment of a temperate reef fish. Ecology 75:1320-1333.   DOI
57 Clark, R. P., Edwards, M. S. & Foster, M. S. 2004. Effects of shade from multiple kelp canopies on an understory algal assemblage. Mar. Ecol. Prog. Ser. 267:107-119.   DOI
58 Connell, S. D. & Russell, B. D. 2010. The direct effects of increasing $CO_2$ and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proc. R. Soc. B Biol. Sci. 277:1409-1415.   DOI
59 Dayton, P. K., Tegner, M. J., Edwards, P. B. & Riser, K. L. 1998. Sliding baselines, ghosts, and reduced expectations in kelp forest communities. Ecol. Appl. 8:309-322.   DOI
60 Duarte, C. M. & Agusti, S. 1998. The $CO_2$ balance of unproductive aquatic ecosystems. Science 281:234-236.   DOI
61 Schiel, D. R. & Foster, M. S. 2015. The biology and ecology of giant kelp forests. University of California Press, Berkeley, 394 pp.
62 Reed, D. C., Rassweiler, A. & Arkema, K. K. 2008. Biomass rather than growth rate determines variation in net primary production by giant kelp. Ecology 89:2493-2505.   DOI
63 Reed, D. C., Rassweiler, A., Carr, M. H., Cavanaugh, K. C., Malone, D. P. & Siegel, D. A. 2011. Wave disturbance overwhelms top-down and bottom-up control of primary production in California kelp forests. Ecology 92:2108-2116.   DOI
64 Rodgers, K. L., Rees, T. A. V. & Shears, N. T. 2015. A novel system for measuring in situ rates of photosynthesis and respiration of kelp. Mar. Ecol. Prog. Ser. 528:101-115.   DOI
65 Schuurmans, R. M., van Alphen, P., Schuurmans, J. M., Matthijs, H. C. P. & Hellingwerf, K. J. 2015. Comparison of the photosynthetic yield of cyanobacteria and green algae: different methods give different answers. PLoS ONE 10:e0139061.   DOI
66 Seymour, R. J., Tegner, M. J., Dayton, P. K. & Parnell, P. E. 1989. Storm wave induced mortality of giant kelp, Macrocystis pyrifera, in southern California. Estuar. Coast. Shelf Sci. 28:277-292.   DOI
67 Shipe, R. F. & Brzezinski, M. A. 2003. Siliceous plankton dominate primary and new productivity during the onset of El Nino conditions in the Santa Barbara Basin, California. J. Mar. Syst. 42:127-143.   DOI
68 Siddon, E. C., Siddon, C. E. & Stekoll, M. S. 2008. Community level effects of Nereocystis luetkeana in southeastern Alaska. J. Exp. Mar. Biol. Ecol. 361:8-15.   DOI