DOI QR코드

DOI QR Code

Species-specific biomass drives macroalgal benthic primary production on temperate rocky reefs

  • Spector, Michael (Department of Biology, San Diego State University) ;
  • Edwards, Matthew S. (Department of Biology, San Diego State University)
  • Received : 2020.06.28
  • Accepted : 2020.08.19
  • Published : 2020.09.21

Abstract

Temperate rocky reefs dominated by the giant kelp, Macrocystis pyrifera, support diverse assemblages of benthic macroalgae that provide a suite of ecosystem services, including high rates of primary production in aquatic ecosystems. These forests and the benthic macroalgae that inhabit them are facing both short-term losses and long-term declines throughout much of their range in the eastern Pacific Ocean. Here, we quantified patterns of benthic macroalgal biomass and irradiance on rocky reefs that had intact kelp forests and nearby reefs where the benthic macroalgae had been lost due to deforestation at three sites along the California, USA and Baja California, MEX coasts during the springs and summers of 2017 and 2018. We then modeled how the loss of macroalgae from these reefs impacted net benthic productivity using species-specific, mass-dependent rates of photosynthesis and respiration that we measured in the laboratory. Our results show that the macroalgal assemblages at these sites were dominated by a few species of stipitate kelps and fleshy red algae whose relative abundances were spatially and temporally variable, and which exhibited variable rates of photosynthesis and respiration. Together, our model estimates that the dominant macroalgae on these reefs contribute 15 to 4,300 mg C m-2 d-1 to net benthic primary production, and that this is driven primarily by a few dominant taxa that have large biomasses and high rates of photosynthesis and / or respiration. Consequently, we propose that the loss of these macroalgae results in the loss of an important contribution to primary production and overall ecosystem function.

Keywords

References

  1. Anderson, M. J. 2017. Permutational Multivariate Analyses of Variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online. Available from: https://doi.org/10.1002/9781118445112.stat07841. Accessed Aug 19, 2020.
  2. Barron, C. & Duarte, C. M. 2015. Dissolved organic carbon pools and export from the coastal ocean. Global Biogeochem. Cycles 29:1725-1738. https://doi.org/10.1002/2014GB005056
  3. Bell, T. W., Cavanaugh, K. C., Reed, D. C. & Siegel, D. A. 2015. Geographical variability in the controls of giant kelp biomass dynamics. J. Biogeogr. 42:2010-2021. https://doi.org/10.1111/jbi.12550
  4. Binzer, T., Sand-Jensen, K. & Middelboe, A. -L. 2006. Community photosynthesis of aquatic macrophytes. Limnol. Oceanogr. 51:2722-2733. https://doi.org/10.4319/lo.2006.51.6.2722
  5. Bodkin, J. L. 1988. Effects of kelp forest removal on associated fish assemblages in central California. J. Exp. Mar. Biol. Ecol. 117:227-238. https://doi.org/10.1016/0022-0981(88)90059-7
  6. Bradley, R. A. & Bradley, D. W. 1993. Wintering shorebirds increase after kelp (Macrocystis) recovery. Condor 95:372-376. https://doi.org/10.2307/1369359
  7. Brown, M. B., Edwards, M. S. & Kim, K. Y. 2014. Effects of climate change on the physiology of giant kelp, Macrocystis pyrifera, and grazing by purple urchin, Strongylocentrotus purpuratus. Algae 29:203-215. https://doi.org/10.4490/algae.2014.29.3.203
  8. Carney, L. T., Bohonak, A. J., Edwards, M. S. & Alberto, F. 2013. Genetic and experimental evidence for a mixedage, mixed-origin bank of kelp microscopic stages in southern California. Ecology 94:1955-1965. https://doi.org/10.1890/13-0250.1
  9. Carr, M. H. 1994. Effects of macroalgal dynamics on recruitment of a temperate reef fish. Ecology 75:1320-1333. https://doi.org/10.2307/1937457
  10. Clark, R. P., Edwards, M. S. & Foster, M. S. 2004. Effects of shade from multiple kelp canopies on an understory algal assemblage. Mar. Ecol. Prog. Ser. 267:107-119. https://doi.org/10.3354/meps267107
  11. Connell, S. D. & Russell, B. D. 2010. The direct effects of increasing $CO_2$ and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proc. R. Soc. B Biol. Sci. 277:1409-1415. https://doi.org/10.1098/rspb.2009.2069
  12. Dayton, P. K., Currie, V., Gerrodette, T., Keller, B. D., Rosenthal, R. & Van Tresca, D. 1984. Patch dynamics and stability of some California kelp communities. Ecol. Monogr. 54:253-289. https://doi.org/10.2307/1942498
  13. Dayton, P. K., Tegner, M. J., Edwards, P. B. & Riser, K. L. 1998. Sliding baselines, ghosts, and reduced expectations in kelp forest communities. Ecol. Appl. 8:309-322. https://doi.org/10.1890/1051-0761(1998)008[0309:SBGARE]2.0.CO;2
  14. Duarte, C. M. & Agusti, S. 1998. The $CO_2$ balance of unproductive aquatic ecosystems. Science 281:234-236. https://doi.org/10.1126/science.281.5374.234
  15. Duarte, C. M. & Cebrian, J. 1996. The fate of marine autotrophic production. Limnol. Oceanogr. 41:1758-1766. https://doi.org/10.4319/lo.1996.41.8.1758
  16. Ebeling, A. W., Laur, D. R. & Rowley, R. J. 1985. Severe storm disturbances and reversal of community structure in a southern California kelp forest. Mar. Biol. 84:287-294. https://doi.org/10.1007/BF00392498
  17. Edwards, M., Konar, B., Kim, J. -H., Gabara, S., Sullaway, G., McHugh, T., Spector, M. & Small, S. 2020. Marine deforestation leads to widespread loss of ecosystem function. PLoS ONE 15:e0226173. https://doi.org/10.1371/journal.pone.0226173
  18. Edwards, M. S. 1998. Effects of long-term kelp canopy exclusion on the abundance of the annual alga Desmarestia ligulata (Light F). J. Exp. Mar. Biol. Ecol. 228:309-326. https://doi.org/10.1016/S0022-0981(98)00046-X
  19. Edwards, M. S. 2001. Scale-dependent patterns of community regulation in giant kelp forests. Ph.D. dissertation, University of California, Santa Cruz, CA, 140 pp.
  20. Edwards, M. S. 2004. Estimating scale-dependency in disturbance impacts: El Ninos and giant kelp forests in the northeast Pacific. Oecologia 138:436-447. https://doi.org/10.1007/s00442-003-1452-8
  21. Edwards, M. S. 2019. Comparing the impacts of four ENSO events on giant kelp (Macrocystis pyrifera) in the northeast Pacific Ocean. Algae 34:141-151. https://doi.org/10.4490/algae.2019.34.5.4
  22. Edwards, M. S. & Estes, J. A. 2006. Catastrophe, recovery and range limitation in NE Pacific kelp forests: a large-scale perspective. Mar. Ecol. Prog. Ser. 320:79-87. https://doi.org/10.3354/meps320079
  23. Edwards, M. S. & Hernandez-Carmona, G. 2005. Delayed recovery of giant kelp near its southern range limit in the North Pacific following El Nino. Mar. Biol. 147:273-279. https://doi.org/10.1007/s00227-004-1548-7
  24. Estes, J. A., Tinker, M. T., Williams, T. M. & Doak, D. F. 1998. Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science 282:473-476. https://doi.org/10.1126/science.282.5388.473
  25. Frieder, C. A., Nam, S. H., Martz, T. R. & Levin, L. A. 2012. High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosciences 9:3917-3930. https://doi.org/10.5194/bg-9-3917-2012
  26. Garcia-Robledo, E. & Corzo, A. 2011. Effects of macroalgal blooms on carbon and nitrogen biogeochemical cycling in photoautotrophic sediments: an experimental mesocosm. Mar. Pollut. Bull. 62:1550-1556. https://doi.org/10.1016/j.marpolbul.2011.03.044
  27. Graham, M. H. 2004. Effects of local deforestation on the diversity and structure of southern California giant kelp forest food webs. Ecosystems 7:341-357. https://doi.org/10.1007/s10021-003-0245-6
  28. Graham, M. H. & Edwards, M. S. 2001. Statistical significance versus fit: estimating the importance of individual factors in ecological analysis of variance. Oikos 93:505-513. https://doi.org/10.1034/j.1600-0706.2001.930317.x
  29. Hobday, A. J. 2000. Age of drifting Macrocystis pyrifera (L.) C. Agardh rafts in the Southern California Bight. J. Exp. Mar. Biol. Ecol. 253:97-114. https://doi.org/10.1016/S0022-0981(00)00255-0
  30. Holbrook, S. J., Carr, M. H., Schmitt, R. J. & Coyer, J. A. 1990. Effect of giant kelp on local abundance of reef fishes: the importance of ontogenetic resource requirements. Bull. Mar. Sci. 47:104-114.
  31. Hondolero, D. & Edwards, M. S. 2017. Changes in ecosystem engineers: the effects of kelp forest type on currents and benthic assemblages in Kachemak Bay, Alaska. Mar. Biol. 164:81. https://doi.org/10.1007/s00227-017-3111-3
  32. Jackson, G. A. 1984. Internal wave attenuation by coastal kelp stands. J. Phys. Oceanogr. 14:1300-1306. https://doi.org/10.1175/1520-0485(1984)014<1300:IWABCK>2.0.CO;2
  33. Jackson, G. A. 1997. Currents in the high drag environment of a coastal kelp stand off California. Cont. Shelf Res. 17:1913-1928. https://doi.org/10.1016/S0278-4343(97)00054-X
  34. Kim, J. -H., Kang, E. J., Edwards, M. S., Lee, K., Jeong, H. J. & Kim, K. Y. 2016. Species-specific responses of temperate macroalgae with different photosynthetic strategies to ocean acidification: a mesocosm study. Algae 31:243-256. https://doi.org/10.4490/algae.2016.31.8.20
  35. Kim, J. -H., Kim, N., Moon, H., Lee, S., Jeong, S. Y., Diaz-Pulido, G., Edwards, M. S., Kang, J. -H., Kang, E. J., Oh, H. -J., Hwang, J. -D. & Kim, I. -N. 2020. Global warming offsets the ecophysiological stress of ocean acidification on temperate crustose coralline algae. Mar. Pollut. Bull. 157:111324. https://doi.org/10.1016/j.marpolbul.2020.111324
  36. Klinger, T., Chornesky, E. A., Whiteman, E. A., Chan, F., Largier, J. L. & Wakefield, W. W. 2017. Using integrated, ecosystem-level management to address intensifying ocean acidification and hypoxia in the California Current large marine ecosystem. Elem. Sci. Anth. 5:16. https://doi.org/10.1525/elementa.198
  37. Konar, B., Edwards, M. S., Bland, A., Metzger, J., Ravelo, A., Traiger, S. & Weitzman, B. 2017. A swath across the great divide: kelp forests across the Samalga Pass biogeographic break. Cont. Shelf Res. 143:78-88. https://doi.org/10.1016/j.csr.2017.06.007
  38. Kopczak, C. D., Zimmerman, R. C. & Kremer, J. N. 1991. Variation in nitrogen physiology and growth among geographically isolated populations of the giant kelp, Macrocystis pyrifera (Phaeophyta). J. Phycol. 27:149-158. https://doi.org/10.1111/j.0022-3646.1991.00149.x
  39. Krumhansl, K. A., Okamoto, D. K., Rassweiler, A., Novak, M., Bolton, J. J., Cavanaugh, K. C., Connell, S. D., Johnson, C. R., Konar, B., Ling, S. D., Micheli, F., Norderhaug, K. M., Perez-Matus, A., Sousa-Pinto, I., Reed, D. C., Salomon, A. K., Shears, N. T., Wernberg, T., Anderson, R. J., Barrett, N. S., Buschmann, A. H., Carr, M. H., Caselle, J. E., Derrien-Courtel, S., Edgar, G. J., Edwards, M., Estes, J. A., Goodwin, C., Kenner, M. C., Kushner, D. J., Moy, F. E., Nunn, J., Steneck, R. S., Vasquez, J., Watson, J., Witman, J. D. & Byrnes, J. E. K. 2016. Global patterns of kelp forest change over the past half-century. Proc. Natl. Acad. Sci. U. S. A. 113:13785-13790. https://doi.org/10.1073/pnas.1606102113
  40. Matson, P. G. & Edwards, M. S. 2007. Effects of ocean temperature on the southern range limits of two understory kelps, Pterygophora californica and Eisenia arborea, at multiple life-stages. Mar. Biol. 151:1941-1949. https://doi.org/10.1007/s00227-007-0630-3
  41. Metzger, J. R., Konar, B. & Edwards, M. S. 2019. Assessing a macroalgal foundation species: community variation with shifting algal assemblages. Mar. Biol. 166:156. https://doi.org/10.1007/s00227-019-3606-1
  42. Middelboe, A. L., Sand-Jensen, K. & Binzer, T. 2006. Highly predictable photosynthetic production in natural macroalgal communities from incoming and absorbed light. Oecologia 150:464-476. https://doi.org/10.1007/s00442-006-0526-9
  43. Miller, R. J., Harrer, S. & Reed, D. C. 2012. Addition of species abundance and performance predicts community primary production of macroalgae. Oecologia 168:797-806. https://doi.org/10.1007/s00442-011-2143-5
  44. Miller, R. J., Page, H. M. & Reed, D. C. 2015. Trophic versus structural effects of a marine foundation species, giant kelp (Macrocystis pyrifera). Oecologia 179:1199-1209. https://doi.org/10.1007/s00442-015-3441-0
  45. Miller, R. J., Reed, D. C. & Brzezinski, M. A. 2011. Partitioning of primary production among giant kelp (Macrocystis pyrifera), understory macroalgae, and phytoplankton on a temperate reef. Limnol. Oceanogr. 56:119-132. https://doi.org/10.4319/lo.2011.56.1.0119
  46. Minich, J. J., Morris, M. M., Brown, M., Doane, M., Edwards, M. S., Michael, T. P. & Dinsdale, E. A. 2018. Elevated temperature drives kelp microbiome dysbiosis, while elevated carbon dioxide induces water microbiome disruption. PLoS ONE 13:e0192772. https://doi.org/10.1371/journal.pone.0192772
  47. Murie, K. A. & Bourdeau, P. E. 2020. Fragmented kelp forest canopies retain their ability to alter local seawater chemistry. Sci. Rep. 10:11939. https://doi.org/10.1038/s41598-020-68841-2
  48. Olive, I., Silva, J., Costa, M. M. & Santos, R. 2016. Estimating seagrass community metabolism using benthic chambers: the effect of incubation time. Estuaries and Coasts 39:138-144. https://doi.org/10.1007/s12237-015-9973-z
  49. Pfister, C. A., Altabet, M. A. & Weigel, B. L. 2019. Kelp beds and their local effects on seawater chemistry, productivity, and microbial communities. Ecology 100:e02798.
  50. R Foundation for Statistical Computing. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from: http://www.R-project.org/. Accessed Aug 19, 2020.
  51. Reed, D. C. & Brzezinski, M. A. 2009. Kelp forests. In Laffoley, D. & Grimsditch, G. (Eds.) The Management of Natural Coastal Carbon Sinks. International Union for Conserviation of Nature and Natural Resources, Gland, pp. 31-38.
  52. Reed, D. C. & Foster, M. S. 1984. The effects of canopy shadings on algal recruitment and growth in a giant kelp forest. Ecology 65:937-948. https://doi.org/10.2307/1938066
  53. Reed, D. C., Rassweiler, A. & Arkema, K. K. 2008. Biomass rather than growth rate determines variation in net primary production by giant kelp. Ecology 89:2493-2505. https://doi.org/10.1890/07-1106.1
  54. Reed, D. C., Rassweiler, A., Carr, M. H., Cavanaugh, K. C., Malone, D. P. & Siegel, D. A. 2011. Wave disturbance overwhelms top-down and bottom-up control of primary production in California kelp forests. Ecology 92:2108-2116. https://doi.org/10.1890/11-0377.1
  55. Rodgers, K. L., Rees, T. A. V. & Shears, N. T. 2015. A novel system for measuring in situ rates of photosynthesis and respiration of kelp. Mar. Ecol. Prog. Ser. 528:101-115. https://doi.org/10.3354/meps11273
  56. Schiel, D. R. & Foster, M. S. 2015. The biology and ecology of giant kelp forests. University of California Press, Berkeley, 394 pp.
  57. Schuurmans, R. M., van Alphen, P., Schuurmans, J. M., Matthijs, H. C. P. & Hellingwerf, K. J. 2015. Comparison of the photosynthetic yield of cyanobacteria and green algae: different methods give different answers. PLoS ONE 10:e0139061. https://doi.org/10.1371/journal.pone.0139061
  58. Seymour, R. J., Tegner, M. J., Dayton, P. K. & Parnell, P. E. 1989. Storm wave induced mortality of giant kelp, Macrocystis pyrifera, in southern California. Estuar. Coast. Shelf Sci. 28:277-292. https://doi.org/10.1016/0272-7714(89)90018-8
  59. Shipe, R. F. & Brzezinski, M. A. 2003. Siliceous plankton dominate primary and new productivity during the onset of El Nino conditions in the Santa Barbara Basin, California. J. Mar. Syst. 42:127-143. https://doi.org/10.1016/S0924-7963(03)00071-X
  60. Siddon, E. C., Siddon, C. E. & Stekoll, M. S. 2008. Community level effects of Nereocystis luetkeana in southeastern Alaska. J. Exp. Mar. Biol. Ecol. 361:8-15. https://doi.org/10.1016/j.jembe.2008.03.015
  61. Smith, S. V. & Hollibaugh, J. T. 1993. Coastal metabolism and the oceanic organic carbon balance. Rev. Geophys. 31:75-89. https://doi.org/10.1029/92RG02584
  62. VanMeter, K. & Edwards, M. S. 2013. The effects of mysid grazing on kelp zoospore survival and settlement. J. Phycol. 49:896-901. https://doi.org/10.1111/jpy.12100
  63. Vasquez, J. A., Vega, J. A. & Buschmann, A. H. 2006. Long term variability in the structure of kelp communities in northern Chile and the 1997-98 ENSO. In Anderson, R., Brodie, J., Onsoyen, E. & Critchley, A. T. (Eds.) Eighteenth Int. Seaweed Symp. Springer, Dordrecht, pp. 279-293.
  64. Ware, C., Dijkstra, J. A., Mello, K., Stevens, A. H., O'Brien, B. & Ikedo, W. 2019. A novel three-dimensional analysis of functional architecture that describes the properties of macroalgae as a refuge. Mar. Ecol. Prog. Ser. 608:93-103. https://doi.org/10.3354/meps12800
  65. Wernberg, T., Kendrick, G. A. & Toohey, B. D. 2005. Modification of the physical environment by an Ecklonia radiata (Laminariales) canopy and implications for associated foliose algae. Aquat. Ecol. 39:419-430. https://doi.org/10.1007/s10452-005-9009-z
  66. Wernberg, T., Thomsen, M. S., Tuya, F., Kendrick, G. A., Staehr, P. A. & Toohey, B. D. 2010. Decreasing resilience of kelp beds along a latitudinal temperature gradient: potential implications for a warmer future. Ecol. Lett. 13:685-694. https://doi.org/10.1111/j.1461-0248.2010.01466.x
  67. Williams, P. J. B. 1998. The balance of plankton respiration and photosynthesis in the open oceans. Nature 394:55-57. https://doi.org/10.1038/27878
  68. Wilmers, C. C., Estes, J. A., Edwards, M., Laidre, K. L. & Konar, B. 2012. Do trophic cascades affect the storage and flux of atmospheric carbon? An analysis of sea otters and kelp forests. Front. Ecol. Environ. 10:409-415. https://doi.org/10.1890/110176

Cited by

  1. Trophic downgrading reduces spatial variability on rocky reefs vol.10, pp.1, 2020, https://doi.org/10.1038/s41598-020-75117-2
  2. Mechanisms leading to recruitment inhibition of giant kelp Macrocystis pyrifera by an understory alga vol.657, 2020, https://doi.org/10.3354/meps13550
  3. Evaluating bloom potential of the green-tide forming alga Ulva ohnoi under ocean acidification and warming vol.769, 2020, https://doi.org/10.1016/j.scitotenv.2020.144443