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1. INTRODUCTION 
 

Model predictive control (MPC) has now more than twenty 
years of the history in industrial application. According to a 
survey paper [1], there have been more than 4,500 process 
implementation have been reported. Industries, processes are 
necessarily subject to aging, modifications, and changes in 
operating conditions. All theses result in performance 
deterioration of MPC which is optimized for the original 
process situation. Since unlike the PID controller MPC is not 
easy to maintain by operation personnel, a strong need for 
on-line performance monitoring and diagnosis has been raised 
from industries. 

For SISO controllers typified by PID, the ratio of the 
control error variance between the present controller and the 
minimum variance controller, which was suggested by Harris 
[2], has been accepted as a standard control performance index. 
Qin [3] extended this idea to the case when the process model 
includes the disturbance model. Stanfelj et al. [4] proposed 
that the cross correlation test can be used to distinguish 
between the plant model error and disturbance model error. 
All these and other contributions have enabled reliable 
assessment of SISO controllers and commercial web-based 
services control loop assessment. 

 Unlike the SISO case, in MIMO control performance 
assessment, there have not been yet generally accepted 
methods. Huang et al. [5] and Harris et al. [6] extended the 
MVC-based SISO assessment method to the MIMO case. 
However, the requirement to identify the time-delay 
distribution between inputs and outputs hampers the usability 
of the method. Kesavan and Lee [7] proposed several 
diagnosis tools that are based on the prediction error (PE) and 
demonstrated their efficacy through numerical examples. 
Since the PE can be calculated when the disturbance model is 
available while present commercial MPC's use only the 
input-output part of the model, the Kesavan's method will not 

be easy to apply to the present commercial MPC's.  
Considering the above general background, the purpose of 

this research has been placed in developing more 
comprehensive and practical performance monitoring and 
diagnosis methods for industrial MPC's. The performance 
monitoring method was devised based on the traditional 
univariate SPC/SQC technique [8]. For this, a whitening filter 
and PCA were introduced to decorrelate the process variables 
that are temporally as well as spatially correlated. For 
diagnosis, a method to identify the model-plant mismatch has 
been proposed. Using this method, the cause of control 
performance deterioration can be found among the controller, 
process, and disturbance, but not into further details. The 
proposed methods have been evaluated with numerical 
systems. 

2. PERFORMANCE MONITORING  
 

The traditional Schwart (and CUSUM) chart monitoring 
gives valid interpretation only when the observed variable is 
uncorrelated with other monitored variables and doesn’t have 
temporal correlation. On the other hand, process variables are 
usually inter-correlated and subject to dynamics. This hampers 
the use of well-developed SPC/SQC techniques in the process 
industries. In this research, we devised a decorrelation 
procedure so that the well-developed SPC/SQC method can be 
used as a monitoring tool for process variables under MIMO 
control. 
 
2.1 Temporal Decorrelator – Whitening Filter 
 
Using control error { }( )me t  measured under in-control state, a 

multivariable ARMA model is identified in the state space 
form using the N4SID technique [9]. 
 

( 1) ( ) ( )x t Ax t Kv t+ = +                             (1) 
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( ) ( ) ( )me t Cx t v t= +                                 (2) 
 
where ( )v t  is zero-mean white noise sequence. The temporal 
decorrelator (whitening filter) can be directly obtained from 
this model through simple rearrangement. 
 

( 1) ( ) ( ) ( )mx t A KC x t Ke t+ = − +                      (3) 

( ) ( ) ( )mv t e t Cx t= −                                  (4) 
 
2.2 Spatial Decorrelator 
 
To the collection of whitened signal { }( )v t  for the in-control 

state measurements, the principal component analysis (PCA) 
is applied such that 
 

V PS≈                                        (5) 
 
where [ ](1) ( )V v v m= ; S, P represent score and loading 

matrices for the major principal components, respectively. 

When a new ( )v t  is obtained during on-line monitoring, it is 
projected on P to get the score such that 
 

( ) ( )Ts t P v t=                                     (6) 
  
 Through this procedure, the spatial correlation between the 

elements of ( )v t  is resolved. The elements ( )is t ’s are 

temporally as well as spatially uncorrelated. 
 
2.3 Schwart Chart Monitoring 
 
  Monitoring of ( )is t ’s follows the standard Schwart and 

CUSUM chart procedure. For example, in the Schwart chart, 
x-bar which is defined for a disjoint subgroup for 
n-consecutive ( )it t ’s as 

 
( ) ( 1)i is t s t nx

n
+ + + −

=                      (7) 

 
is monitored for each . The two control limits, UCL and LCL, 
are determined as 
 

UCL X Rα= +                                    (8) 

LCL X Rα= −                                    (9) 
 

where x  and R  are defined for the in-control state data 
such that 
 

1 2 nx x xx
n

+ +
=   for a sufficiently large N          (10) 

1 2 nR R RR
n

+ +
=    for a sufficiently large N            (11) 

where highest lowestR x x= −  within each group. 

 
andα  is given in relation to the specified risk level and can 
be found in a standard text book like [10]. 
 
3. DIAGNOSIS  
 

The cause of poor control performance can be classified 
into three: inadequate controller tuning, large plant-model 
mismatch, and large disturbance. There are different ways to 
identify the cause. However, the method based on closed-loop 
identification is thought to give the most lucid conclusion. In 
this research, we propose a method to estimate the model error 
and the disturbance signal at the same time. From this result, 
one can determine which of the three would be most important 
cause of the performance degradation. 
 
3.1 Identification of plant-model mismatch 
 
  Figure 1 shows a block-diagram that represents the situation 
of the proposed identification experiment. For unbiased model 
estimate, a zero-mean dither signal ˆ( )u t  is superimposed at 

the input port. 
 

 
 

Fig. 1. Block diagram representation of the model error 
identification experiment. 

The block diagram analysis shows that the output error is 
given by 
 

ˆ( ) ( )( ( ) ( )) ( )o t g q u t u t d tε = + +                     (12) 

 

In the above, ˆ( )u t  is uncorrelated with ( )d t , which 

implies ˆ ( ) 0duR τ =  for all τ . Hence, we have the relation 

 

ˆ ˆ ˆ( ) ( )( ( ) ( )
ou uu uR g q R Rε τ τ τ= +                         (13) 
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and can estimate ( )g q  through the least squares method. 
Once the estimate of ˆ( )g q is obtained, the disturbance signal 
can be reproduced according to 
 

ˆ ˆ ˆ( ) ( ) ( )( ( ) ( ))od t t g q u t u tε= − +                      (14) 
 

In this research, ( )g q  is represented by a MIMO FIR 
model and the impulse response coefficient matrices are 
determined using the least squares (LS) method. To avoid the 
co-linearity problem, the partial least squares (PLS) method is 
employed instead LS method. 
  The model error estimate ˆ ( )g q  can be graphically 
represented in the frequency domain as an array of 

[ ]( ) / ( ) , 0,j j
ij ijg e G eω ω ω π  ∈   and we can locate what part of 

the model raise the problem. ˆ ( )g q  can also be used to 
update the process model ( )G q  on which present MPC is 
based. 
  

 
  

Fig. 2. A 2×2 system with output disturbance. 
 
One thing that has to be remembered is that the disturbance 

estimation is possible only when the whole ( )g q , not a part of 
( )g q , is estimated. This can be illustrated using Fig. 2. If 

only 11( )g q is estimated using { }1 1( ), ( )u t y t , the disturbance 

estimate according to (12) represents 
 

1 11 1 1 12 2 1ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )y t g q u t d t g q u t d t− = + ≠          (15) 
 

If both the model error and disturbance estimates are small, 
one may suspect the controller as the cause of the poor 
performance. 
 
3.2 Cross-correlation Test 
 

The previous model error identification method concerns 
only the input-output part of the process model. Since the most 
commercial MPC’s are designed based on ( )G q , the method 
can be applied to the existing MPC systems although the 
perturbation tests of a controlled process need a concession 
from operators. 
  Unlike the previous method, the cross-correlation test can 
be conducted without closed loop perturbation but only when 
both ( )G q and ( )H q are available. In this respect, it is 
inadequate to implement in the present commercial MPC’s. 
Nevertheless, this method is considered as a possible future 
supplement to the model error identification method. 
 The test is conducted between the input ( )u t and the 
prediction error ( )tε and the experimental situation is shown 
Fig. 3.  

 
Fig. 3. The situation diagram for the cross-correlation test   

 
The prediction error is represented as [11] 

 
1ˆ( ) ( ) ( ) ( ) ( ( ) ( ) ( ))t y t y t H q y t G q u tε −= − = −            (16) 

 
From the fact that ( ) ( ( ) ( )) ( ) ( ( ) ( )) ( )y t G q g q u t H q h q e t= + + + , 

the model error effect on the prediction error can be shown as 
 

1 1( ) ( ( ) ( )) ( ) ( ) ( ) ( )t I H q h q e t H q g q u tε − −= + +           (17) 
 

Under closed-loop control, u(t) is necessarily affected by 
( )e t τ− . Thus ( )tε and ( )u t τ− , 0τ ≥  are independent only 

when ( ) ( ) 0g q h q= = . Also, under the hypothesis that 
( )tε and ( )u t τ− , 0τ ≥ are independent, it holds [12] that 

 

1

1ˆ ˆ( ) ( ) ( )
N

N T
u

t

R t u t
Nε τ ε τ

=

= −∑                      (18) 

 
satisfies 
 

1 1
ˆ ( ) (0, ), ( ) ( )N

u u
k

N R N P P R k R kε ετ
∞

= −∞

→ = ∑      (19) 

 
Using this property, we can test if ( )tε and ( )u t τ− are 

independent, or equivalently, the model errors for both 
( )G q and ( )H q are negligible. 

 
3.2 Prediction Error Monitoring under MPC Detuning [7] 
 

It is obvious that ( )tε  is unaffected by any change in the 
controller tuning as far as ( ) ( ) 0g q h q= = . The detuning 
technique is considered as another supplement technique to 
the model error identification method. But it shares the same 
drawback as that of the cross-correlation test. 
 

4. NUMERICAL EXAMPLE 
 

In this example, we demonstrate the performance of the 
model-error identification method for a 2×2 system. 
The true process is represented by 
 

1

2

( )
( ) ( )

( )
e t

y t Gu t W
e t
 

= +  
 

                         (20) 
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where ( ), 1, 2ie t i = are white noise processes with (0,1)N . 

( )G q  is assumed to be 
 

2 2

2 2

0.020 0.018 0.0044 0.0041
1.684 0.660 1.803 0.8119

( )
0.016 0.014 0.0086 0.0081

1.625 0.659 1.844 0.85

q q
q q q q

G q
q q

q q q q

+ + 
 + + − + =

+ + 
 − + − + 

.  (21) 

 
the real process is 
 

2 2

2 2

0.223 0.020 0.0049 0.0045
1.684 0.660 1.803 0.8119

( )
0.018 0.016 0.0089 0.0084

1.625 0.659 1.844 0.85

process

q q
q q q q

G q
q q

q q q q

+ + 
 + + − + =

+ + 
 − + − + 

(22) 

 
W is an integrator. 
 

1 0
1

0.50
1

zW

z

 
 −=  
 
 − 

                               (23) 

 
For model error identification, independent PRBS’s (with 

increasing the clock period for signal spectrum adjustment) 
were applied to 1ˆ ( )u t and 2ˆ ( )u t , respectively. 

In Fig.4, the estimated impulse response coefficients of the 
model-plant mismatch are shown in comparison of the true 
values. We can see that the proposed method yields highly 
reliable results. 
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Fig. 4.  Impulse response coefficients of the model-plant 
mismatch (solid line-estimated values, broken line- true 

values) 
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Fig. 5. Disturbance signals (solid line-estimated value, broken 
line-true value) 

 
Fig.5 shows a part of the disturbance signals regenerated 

according to (14), which is compared with the true signals. 
this time, too, a satisfactory result was obtained. 
 

5. CONCLUSION 
 

In this paper, we presented several tools for monitoring and 
diagnosing the performance of multivariable control systems. 
The monitoring part is based on the well-established 
traditional SPC/SQC technique whereas the diagnosis part 
utilizes the closed-loop identification as the key technique. 
Through a number of different numerical tests, the proposed 
techniques are found to be effective and simple to apply. It is 
believed that the concepts presented in this paper can play as 
important alternatives to the currently exploited performance 
monitoring and diagnosis methods for MIMO control systems. 
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