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Abstract — The inhomogeneous Helmholtz equation is introduced for variable water depth and potential func-
tion and separation of variables are introduced for the derivation. Only harmonic wave motions are considered.
The governing equation composed of the potential function for irrotational flow is directly applied to the still
water level, and the inhomogeneous Helmholtz equation for variable water depth is obtained. By introducing
the wave amplitude and wave phase gradient the governing equation with complex potential function is trans-
formed into two equations of real variables. The transformed equations are the first and second-order ordinary
differential equations, respectively, and can be solved in a forward marching manner when proper boundary val-
ues are supplied, i.e. the wave amplitude, the wave amplitude gradient, and the wave phase gradient at a side
boundary. Simple spatially-centered finite difference numerical schemes are adopted to solve the present set of
equations. The equation set is applied to two test cases, Booij’s inclined plane slope profile, and Bragg’s wavy
bed profile. The present equations set is satisfactorily verified against other theories including the full linear
equation, Massel’s modified mild-slope equation, and Berkhoff’s mild-slope equation etc.
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1. INTRODUCTION inhomogeneous Helmholtz equation has been used for solving
geological wave propagation in inhomogeneous media, see
Wave equations for harmonic waves with potential function =~ Manolis and Shaw (1997). Hsiao et al. (1998) also simplified

are distinguished by applicability on variable water depth. The  the mild-slope equation to the inhomogeneous Helmholtz equa-

TCorresponding author: hkim@kookmin.ac.kr tion, and treated the variable water depth as modification of
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constant water depth by introducing a perturbation method.
The inhomogeneous Helmholtz equation has not often been
used for wave transformation over variable water depth, while
the homogeneous Helmholtz equation has been widely used for
description of wave transformation over uniform depth since it
was proposed by Helmholtz.

Wave transformation over sloped sea bed has been described
by the mild-slope equation. The “mild slope” has been defined
by a slope smaller than 1/3. The mild-slope equation was
developed from either the continuity equation or the principle
of stationary action with the variational principle.

The starting point of both the Helmholtz equation and the
mild-slope equation is the same. Velocity potential function, @,
is used to describe the irrotational wave motion. The continu-

ity of mass flow in the x-z domain is the Laplace equation:
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where x is the horizontal coordinate, and z is the upward ver-
tical coordinate, the origin of which is the still sea level. The
continuity of mass flow should be satisfied at every point in
the computational domain at every instant. Then, the inte-
grated continuity equation will also be satisfied at every sec-
tion in the computational domain at every instant.

At free surface boundary nonlinear terms of the momentum
equation are ignored, and the following condition in a linear

form is applied:
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where 7 is time, g is the acceleration due to gravity. At the

bed the following zero fluid flux condition is applied:

oD _ dhod 3)
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where 4 is the water depth relative to the still water level, and

varies along x. Considering harmonic motions only, variables

are assumed to be separated as:
@ = Re(Z¢) 4)

where complex ¢ is dependent on x only, and complex (2 is

dependent on time only as:
0= exp(—iwt) ®)

where i= .1, and is the wave angular velocity, and the

function Z is assumed to have the following form:

_ coshk(z+h)
coshkh (©)

Then, the bed boundary condition becomes:

¢ _ dnd(z¢) o
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where ko is the wave number at deep sea (=w?/g). Then, the
free surface boundary condition, Eq. (9), produces the follow-

ing dispersion relationship:
% = tanhkh O]

where both £ and 4 are dependent on x, and Z is dependent
on both x and z.
If the water depth is uniform, dh/dx is zero, and we obtain

the homogeneous Helmholtz equation:
Z:g+k2¢ =0 for one-dimensional problems,
X

or V’¢+k¢=0 for two-dimensional problems. (10)
where V is the gradient vector in the and directions.
Berkhoff (1973) has derived the mild-slope equation for
variable water depth problems. The integration of the equation
of continuity equation multiplied by an arbitrary weight func-
tion at any selected section should be satisfied at every instant.
Berkhoff chose a hyperbolic cosine function as the weight
function in the vertical direction to take into account vertical
distribution of wave energy flux, and integrated the equation in
the same direction. Berkhoff then took the vertical integration
process of the equation which is the multiplication of the con-
tinuity equation and the weight function, Z of Eq. (6), in the

vertical direction, which is:
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Berkhoff made use of Green’s theorem in order to reflect the
bed boundary condition in the middle of his derivation of the
mild-slope equation. The mild-slope equation has also been
proposed in different types of partial differential equation by
Radder (1979) and Copeland (1985).

More recently the modified mild-slope equation was pro-



176

posed by Massel (1993), and Chamberlain and Porter (1995).
Two time-dependent forms of the modified mild-slope equa-
tion were presented by Suh ef al. (1997) by using Green’s the-
orem and the variational principle. Suh er al.’s equations are
transformed into the modified mild-slope equation of Massel
when the time-dependent term is replaced by time-invariant
term. The modified mild-slope equation is reduced to the mild-
slope equation when some higher-order terms of the modified
mild-slope equation are turned off. The modified mild-slope
equation reproduces more accurate reflection coefficients for
Bragg’s test cases than the mild-slope equation with the aid of
additional higher-order terms. Kim et al. (2009) adopted another
uniform weight function in the vertical direction as follows:

L (62® oD (12)
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However, the above equations, the mild-slope equation, mod-
ified mild-slope equation, and Kim et al.’s equation, have a
common defect that they don’t satisfy the bed boundary con-
dition because they explain horizontally propagating mode only,
and this discrepancy is passed over to the other vertical mode
for perfect satisfaction of the bed boundary condition.

The continuity should be strictly satisfied in every fluid posi-
tion within the computational domain including the still water
level, because the wave equation is valid from the still water
level to the bed level. If we pickup a level instead of integra-
tion of the continuity through the water depth, it corresponds to
a case that a delta function is chosen as the weight function at
the still water level.

We derive the inhomogeneous Helmholtz equation for vari-
able water depth in Section 2, and the equation composed of
complex potential function is transformed into two other equa-
tions composed of real wave amplitude and wave phase gradi-
ent function in Section 3. The system of equations is applied to
two topographies for comparison with other theories in Sec-

tion 4.

2. DERIVATION OF INHOMOGENEOUS HELM-
HOLTZ EQUATION FOR WATER WAVES

We apply Eq. (3) to the still water level (z = 0). Then,

0Z _ (k(z+h))'sinh(k(z +h))cosh(kh) —(kh)' cosh(k(z + h))sinh(kh)
Ox cosh’(kh) (13)
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Similarly, we obtain the second derivative of the function Z at

the still water level as follows:

9Z-0)=0

(15)
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The above results are obvious from the fact that is constant
along the still water level, i.e. is always unity from its defini-
tion, Eq. (6), and its partial derivative and second partial deriv-
ative in the axis on the still water level are also zero. Then,
we obtain the inhomogeneous Helmholtz equation with vari-
able:

(’i’é+k2¢ =0 (16)

ox
This equation has the same form as Eq. (10), but is avariable
in this equation. Eq. (16) can be considered as an extreme view in
which 100% of weight is concentrated on the free surface.
Interestingly, Eq. (16) also quite closely reflects the flow
characteristics of the short-wave transformation with the help
of the consideration of the bathymetric change through the vari-
able k in spite of its relatively simple form. Eq. (15) can be
extended to a three-dimensional form by including the other

horizontal coordinate, y, as:

Vig+kg=0 (17)

Now Eg. (16) satisfies the governing equation, and the free
surface boundary condition is satisfied by the dispersion rela-
tionship. Here we examine whether the bed boundary condition
could be reflected in the governing equation, the inhomoge-
neous Helmholtz equation. When the hyperbolic cosine func-
tion of Eq. (6) is applied, the left side of the bed boundary
condition, Eq. (7), becomes zero, which leads complete zero
horizontal and vertical velocities at the bed. The right side of
the bed boundary condition, Eq. (7), reads:

‘;l—f = —ktanhkh%¢ — gk, g (18)
Replacing the second and first differential terms of the gov-
erning equation, Eq. (16), by the non-differential term of Eq. (18)

repeatedly, we obtain:

(19)
(20)

&(k,h)¢=0

&= Ckhytanh + (k) —L— |+t anhk+
cosh’kh

where g» includes k(x) and /A(x). Since Eq. (18) should always
be satisfied, either ¢ or g» should be zero. Zero ¢ constitutes
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a trivial solution. The other equation, g>=0, composes another
relationship between k& and 4. This new relationship between
k and / comes into conflict with the dispersion relationship
between & and 4 derived from the free surface boundary con-
dition. Therefore, we convey this mismatch of the mass con-
servation at the bed to evanescent modes instead of applying of
this bed boundary condition to the horizontally propagating
mode. We can also see that the mild-slope equation and the
modified mild-slope equation have the same problem as the
present equation. Trials have been attempted to incorporate
evanescent modes in dealing with wave propagation problems
over sloped beds, see Massel (1993). However the evanescent
modes are not of main interest of this paper.

As far as the assumptions of cosine hyperbolic distribution
function is adopted for Z function, and Eq. (7) is to be perfectly
satisfied, then, both the horizontal velocity and the vertical
velocity at the bed should be zero, and the final solution becomes
inaccurate. At this point we examine whether Kim and Bae’s
(2006) complementary mild-slope equation satisfies the bed
boundary condition. They introduced a hyperbolic sine function
for Z:

_ sinhk(z+h)

sinhkh @1

As far as the dispersion relationship is valid, another relation-
ship between k£ and / develops, and the bed boundary condi-
tion cannot be satisfied with propagating mode only, either. In
summary the mild-slope equations group to date including the
mild-slope equation, the modified mild-slope equation, the
complementary mild-slope equation, and the present inhomo-
geneous Helmholtz equation can comply with the bed bound-
ary condition only with the help of the non-propagating
evanescent modes.

The one-dimensional versions of both the Helmholtz equa-
tion and the previous equations including the mild-slope equa-
tion, modified mild-slope equation, and Kim et al.’s equation

can be arranged in the following form:

-—Q+Adh‘_@+k +Bd_h+c(dh) ¢=0

22
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While 4, B, or C are non-zero functions in the mild-slope
equation, modified mild-slope equation, or Kim et al.’s
(2009) equation, 4, B, and C are zero in the inhomogeneous
Helmholtz equation.

Here we introduce two real functions, the wave amplitude, a,

the wave phase function, S. And, b is defined as the spatial gra-
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dient of the wave phase function as:

as

and b= o

(23)
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The wave amplitude and wave phase function are dependent
on x for one-dimensional problems. Then, Eq. (16) is split

into the following two equations as:

(24)
and
0b 20a
—+==H=0 25
Ox adx (25)

3. NUMERICAL SOLUTION

A set of real Egs. (24) and (25) for wave transformation prob-
lems over mild-sloped beds are solved. We adopt explicit finite
difference schemes for Eqs. (24) and (25). First, Eq. (24) is dis-

cretized as:

a; 1—2a; +a,+l+(k~ b )CI _ (26)
and Eq. (25) is discretized as:
bi_bifl+ 4(ai_ai—l) bi+bi, =0 (27)

Ax  Ax(aita.) 2

Boundary conditions at a side point are needed. Here a, da/
dx, and b at the right end of the computational domain in the x
direction are provided. These are discrete values ay, a1, and
by The two finite difference equations are alternately solved:
Eq. (26) for a1, and Eq. (27) for b,:. Both difference equa-
tions are centered in space, see Fig. 1:

a., :%[4 2(k-b)Ax’a—2a,,] (28)
and
2+G
b, = 2+Grosy 29
! 2 G/OS ( )
K i G ios ki G v Koin
a a i
b i, b bin
| | | | X

i-1 [ i+1

Fig. 1. Variable numbering system in finite difference equations set.
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where
_4@—ai)
Grons Ax(a;+a;,) (30)

Egs. (28) and (29) are solved in a forward progressive man-

ner from the right side to the left side.

4. VERIFICATION OF THE INHOMOGENEOUS
HELMHOLTZ EQUATION

The new set of equations is applied to a series of profiles
used by Booij (1983). The bathymetry is composed of an
inclined plane with a variable slope or variable width, B, which
connects the two flat beds at off-shore and near-shore sides. A
step with a bed of a constant slope separates two flat beds, see
Fig. 2. The offshore water depth is 60 cm, the near-shore water
depth is 20 cm, and the wave period of the incident waves is 2 s.

The boundary values at the right end of the computation
domain are simply provided because only outgoing waves exist
at the near-shore end. The wave amplitude, a, at the near-shore
boundary is chosen as 0.1 m, and the value of the phase func-
tion derivative, b, is given the wave number at the shallow
zone. The two dependent variables, a and b, are alternately com-
puted by half grid size advancement at each computation of
Eqgs. (28) and (29) from the near-shore end to the off-shore end.

Computed spatial distribution of the relative wave ampli-
tude to the outgoing wave amplitude for a specific plane incli-
nation, B =1 m, is shown in Fig. 3. The wave amplitude shows
undulation off-shore side from the inclined plane because of
the superposition of the incident and reflected waves.

Computed spatial distribution of the wave phase gradient
function for a specific plane slope width of 1 m is shown in
Fig. 4. The wave phase gradient function also has undulation
off-shore side from the inclined plane because of the superpo-

sition of incident and reflected waves in the region.

WAVE Z
ﬁ
7 .
7 X
0.2m
0.6 m
=
B
X=0 X=B

Fig. 2. Booij’s test step with inclined plane.

Fig. 3. Computed spatial distribution of relative amplitude for
Booij’s bed profile of B=1 m.
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Fig. 4. Computed spatial distribution of phase gradient for Booij’s
bed profile of B=1 m.

Reflection coefficient, K,, can be obtained from the com-
puted wave amplitude field from the computed maximum and
minimum wave amplitudes, dm.x and amin, at the off-shore flat

bed zone, that is:

A — i
K.= P 31
Computed reflection coefficients from the inhomogeneous Helm-
holtz equation for Booij’s test profiles are shown in Fig. 5. In
general the reflection coefficients of the inhomogeneous
Helmholtz equation are close to those of the full linear equa-
tion which does not involve separation of variables (Park ef al.,
1991). The reflection coefficients of the present equation are
smaller than those of the mild-slope equation or the modified
mild-slope equation for inclined plane of slope between 0.4
and 4. The origin of these discrepancies should be the differ-
ences on the weight functions.

For the plane slopes of greater than or equal to 1, which cor-
responds to B<0.4 m, the computed reflection coefficients from

the inhomogeneous Helmholtz equation agree well with those



HIZHE Helmholtz ®Pg4S o837 Whis 4ok slehidy 179

x  FULL LINEAR EQ.
-—---KIM ET AL. (2009)

------- MOD. MILD SLOPE

0.1 ;
—-—--MILD SLOPE EQ.
o
~ — HELMHOLTZ EQ.
0.01 ¥
0.001 L
0.1 1 10
B

Fig. 5. Comparison of computed reflection coefficients for Booij’s
bed profile.
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Fig. 6. Bragg’s sinusoidal bathymetry with 4 ripples.

from the full linear equation, while the mild-slope equation and
the modified mild-slope equation and Kim et al.’s (2009) equa-
tion show quite large gaps from the full linear equation. The
reflection coefficients from the full linear equation, the inho-
mogeneous Helmholtz present equation, and the modified mild-
slope equation are very close for B larger than or equal to 4 m,
because the higher order terms become negligible when the bed
slope is small.

Next the inhomogeneous Helmholtz equation is applied to
Bragg’s bathymetry to examine its applicability for a different
bathymetry, see Fig. 6. It has been known that sinusoidal bathym-
etry can cause high reflection depending on the ratio between
the bed form length and the wave length. The bathymetry is

expressed by the following equation:

h,=0.156
h=h—0.05sin2n/l)  0<x<4l
h,=0.156 (32)

where % is the water depth in meter, 4, and A are the off-
shore water depths from the bed forms, respectively, and / is
the ripple length.

Incident waves propagate in the positive direction. Calling
the wave length L, the computed reflection coefficient for 27/
L=0.98 from the Helmholtz equation is 0.748, which closely

——--KIM ET AL.(2009)
0.7
—-—--MOD. MILD SLOPE
. EQ.
. —--—-MILD SLOPE EQ.
0.5
q —— HELMHOLTZ EQ.
Toa4a
0.3
0.2 A
o1 /\ AN
TR
0 1 2 3

2/L

Fig. 7. Comparison of computed reflection coefficients for Bragg’s
bed profile.

agrees with 0.752 from the modified mild-slope equation, and
0.745 from Kim et al.(2009)’s equation, while the reflection
coefficient of 0.678 from the mild-slope equation is smaller
than the other results, see Fig. 7. The gaps between the reflec-
tion coefficients from the mild-slope equation and the other
equations are non-negligible. It may be too early to conclude
that any one equation is superior to the other equations just
from these tests over Bragg’s bathymetry because of difficulty
in accurate measurements.

An interesting feature is the distribution of the reflection
coefficient around the second resonance point, i.e. 2//L=2.
The compared equations produce different reflection coeffi-
cients around the point. The computed reflection coefficients
from the inhomogeneous Helmholtz equation around the sec-
ond resonance point are smaller than those from the mild-slope
equation and the modified mild-slope equation, and greater
than those from Kim et al.’s equation, see Fig. 8. The explana-

tion for this difference could be possible in the future works.

0.16 = = ‘KM ET AL. (2009)
0.14 - - - :MOD. MILD SLOPE
012 o |....... EA%D SLOPE EQ.
0.1 ——HELMHOLTZ EQ.
T o0.08
0.06
0.04
0.02
0

21/

Fig. 8. Zoomed computed reflection coefficients for Bragg’s bed
profile around second resonance.
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5. CONCLUSIONS

The inhomogeneous Helmholtz equation is adopted and
examined for description of harmonic wave transformation over
variable depth. The continuity equation has a weight of a delta
function along the still water level, and is assumed to be sepa-
rated by two functions, a vertical distribution function Z, and a
spatial potential function @ in the x axis. The inhomogeneous
Helmholtz equation has two forms: a form with the complex
velocity potential function, and the other form in a set of equa-
tions with the wave amplitude and the wave phase function.

The inhomogeneous Helmholtz was applied to two bed pro-
files, Booij’s inclined bed profile, and Bragg’s wavy ripple bed
profile. The inhomogeneous Helmholtz equation was verified
against other theories.

The test of the present equation on Booij’s steps reveals that
the inhomogeneous Helmholtz equation provides better accu-
rate reflection coefficient with respect to the solutions from the
full linear equation than the modified mild-slope equation or
the mild-slope equation. Moreover the inhomogeneous Helm-
holtz equation shows good agreement over wide range of bed
slopes.

The test of the present equation on Bragg’s sinusoidal rip-
ples confirms that the inhomogeneous Helmholtz equation pro-
duces correct reflection coefficient when the ripple length is about
half of the wave length compared with other theories, e.g. the
modified mild-slope equation, and the modified mild-slope equa-
tion, or Kim ef al.’s (2009) equation.

The numerical experiments over two kinds of bathymetry
confirm the accuracy and applicability of the inhomogeneous
Helmholtz equation based on the delta weight function along

the still water level.
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