• Title/Summary/Keyword: spatial data mining

Search Result 169, Processing Time 0.023 seconds

Application of Laser Scanner for Mine Management and Mining Plan (광산관리와 채굴계획 수립을 위한 레이저스캐너의 활용)

  • Park, Joon Kyu;Jung, Kap Yong
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.693-700
    • /
    • 2017
  • The mines in our country are complex in geography and shape and because of its small scale, accurate surveying performance and 3D modeling are necessary for mine development and management and mining plans. However, due to the data acquisition and processing technology and economy, the existing methods are currently used. The structure, mining, and mining area of the mine are recorded and managed based on the 2D drawings. As a result, it is true that there is risk of accidents caused by problems of accuracy as well as waste of personnel and time. In recent years, research data on geology and geospatial information on mines have been integrated into a database in foreign countries, and they are used for mine management and mining planning. In this study, we tried to construct spatial information for mining management and mining plan using laser scanner. Through research, spatial information about the mine was effectively obtained and produced data modeled through data processing. The 3D model for mining mines is expected to be a valuable tool for establishing and operating a safe mining plan for mines.

TFP tree-based Incremental Emerging Patterns Mining for Analysis of Safe and Non-safe Power Load Lines (Safe와 Non-safe 전력 부하 라인 분석을 위한 TFP트리 기반의 점진적 출현패턴 마이닝)

  • Lee, Jong-Bum;Piao, Ming Hao;Ryu, Keun-Ho
    • Spatial Information Research
    • /
    • v.19 no.2
    • /
    • pp.71-76
    • /
    • 2011
  • In this paper, for using emerging patterns to define and analyze the significant difference of safe and non-safe power load lines, and identify which line is potentially non-safe, we proposed an incremental TFP-tree algorithm for mining emerging patterns that can search efficiently within limitation of memory. Especially, the concept of pre-infrequent patterns pruning and use of two different minimum supports, made the algorithm possible to mine most emerging patterns and handle the problem of mining from incrementally increased, large size of data sets such as power consumption data.

Analyzing the Location Decision of the Large-Scale Discount Store Using the Spatial Association Rules Mining (공간 연관규칙을 이용한 대형할인점의 입지 분석)

  • Lee Yong-Ik;Hong Sung-Eon;Kim Jung-Yup;Park Soo-Hong
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.3 s.114
    • /
    • pp.319-330
    • /
    • 2006
  • The objective of this research is to achieve an objectivity of site decision after extracting site decision factors on a large-scale discount store(LSDS) and utilize any hidden information using the association rules mining through huge database. To catch this objective, we collect a census, economic, and environmental dataset related with locating of LSDS. And then, we construct a spatial data on the research area. These data is used for the extraction of a spatial association rules. To verify whether the extracted rules are suitability or not, we use the sales of some LSDS. As the result of test, the more sales, the more factors of the extracted rules relate with the sales it coincides. Consequently, the spatial association rules mining is efficient method which support the ideal site decision of LSDS.

A Technique for Extracting GeoSemantic Knowledge from Micro-blog (마이크로 블로그기반의 공간 지식 추출 기법연구)

  • Ha, Su-Wook;Nam, Kwang-Woo;Ryu, Keun-Ho
    • Spatial Information Research
    • /
    • v.20 no.2
    • /
    • pp.129-136
    • /
    • 2012
  • Recently international organizations such as ISO/TC211, OGC, INSPIRE (Infrastructure for Spatial Information in Europe) make an effort to share geospatial data using semantic web technologies. In addition, smart phone and social networking services enable community-based opportunities for participants to share issues of a social phenomenon based on geographic area, and many researchers try to find a method of extracting issues from that. However, serviceable spatial ontologies are still insufficient at application level, and studies of spatial information extraction from SNS were focused on user's location finding or geocoding by text mining. Therefore, a study of extracting spatial phenomenon from social media information and converting it into geosemantic knowledge is very usable. In this paper, we propose a framework for extracting keywords from micro-blog, one of the social media services, finding their relationships using data mining technique, and converting it into spatiotemopral knowledge. The result of this study could be used for implementing a related system as a procedure and ontology model for constructing geoseem antic issue. And from this, it is expected to improve the effectiveness of finding, publishing and analysing spatial issues.

Design of Spatial Clustering Method for Data Mining of Various Spatial Objects (다양한 공간객체의 데이터 마이닝을 위한 공간 클러스터링 기법의 설계)

  • 문상호;최진오;김진덕
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.4
    • /
    • pp.955-959
    • /
    • 2004
  • Existing Clustering Methods for spatial data mining process only Point objects, not spatial objects with polygonometry such as lines and areas. It is because that distance computation between objects with polygonometry for clustering is more complex than distance computation between point objects. To solve this problem, we design a clustering method based on regular grid cell structures. In details, it reduces cost and time for distance computation using cell relationships in grid cell structures.

Analysis and Prediction of Power Consumption Pattern Using Spatiotemporal Data Mining Techniques in GIS-AMR System (GIS-AMR 시스템에서 시공간 데이터마이닝 기법을 이용한 전력 소비 패턴의 분석 및 예측)

  • Park, Jin-Hyoung;Lee, Heon-Gyu;Shin, Jin-Ho;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.16D no.3
    • /
    • pp.307-316
    • /
    • 2009
  • In this paper, the spatiotemporal data mining methodology for detecting a cycle of power consumption pattern with the change of time and spatial was proposed, and applied to the power consumption data collected by GIS-AMR system with an aim to use its resulting knowledge in real world applications. First, partial clustering method was applied for cluster analysis concerned with the aim of customer's power consumption. Second, the patterns of customer's power consumption data which contain time and spatial attribute were detected by 3D cube mining method. Third, using the calendar pattern mining method for detection of cyclic patterns in the various time domains, the meanings and relationships of time attribute which is previously detected patterns were analyzed and predicted. For the evaluation of the proposed spatiotemporal data mining, we analyzed and predicted the power consumption patterns included the cycle of time and spatial feature from total 266,426 data of 3,256 customers with high power consumption from Jan. 2007 to Apr. 2007 supported by the GIS-AMR system in KEPRI. As a result of applying the proposed analysis methodology, cyclic patterns of each representative profiles of a group is identified on time and location.

A Public Open Civil Complaint Data Analysis Model to Improve Spatial Welfare for Residents - A Case Study of Community Welfare Analysis in Gangdong District - (거주민 공간복지 향상을 위한 공공 개방 민원 데이터 분석 모델 - 강동구 공간복지 분석 사례를 중심으로 -)

  • Shin, Dongyoun
    • Journal of KIBIM
    • /
    • v.13 no.3
    • /
    • pp.39-47
    • /
    • 2023
  • This study aims to introduce a model for enhancing community well-being through the utilization of public open data. To objectively assess abstract notions of residential satisfaction, text data from complaints is analyzed. By leveraging accessible public data, costs related to data collection are minimized. Initially, relevant text data containing civic complaints is collected and refined by removing extraneous information. This processed data is then combined with meaningful datasets and subjected to topic modeling, a text mining technique. The insights derived are visualized using Geographic Information System (GIS) and Application Programming Interface (API) data. The efficacy of this analytical model was demonstrated in the Godeok/Gangil area. The proposed methodology allows for comprehensive analysis across time, space, and categories. This flexible approach involves incorporating specific public open data as needed, all within the overarching framework.

An Analysis of Indications of Meridians in DongUiBoGam Using Data Mining (데이터마이닝을 이용한 동의보감에서 경락의 주치특성 분석)

  • Chae, Younbyoung;Ryu, Yeonhee;Jung, Won-Mo
    • Korean Journal of Acupuncture
    • /
    • v.36 no.4
    • /
    • pp.292-299
    • /
    • 2019
  • Objectives : DongUiBoGam is one of the representative medical literatures in Korea. We used text mining methods and analyzed the characteristics of the indications of each meridian in the second chapter of DongUiBoGam, WaeHyeong, which addresses external body elements. We also visualized the relationships between the meridians and the disease sites. Methods : Using the term frequency-inverse document frequency (TF-IDF) method, we quantified values regarding the indications of each meridian according to the frequency of the occurrences of 14 meridians and 14 disease sites. The spatial patterns of the indications of each meridian were visualized on a human body template according to the TF-IDF values. Using hierarchical clustering methods, twelve meridians were clustered into four groups based on the TF-IDF distributions of each meridian. Results : TF-IDF values of each meridian showed different constellation patterns at different disease sites. The spatial patterns of the indications of each meridian were similar to the route of the corresponding meridian. Conclusions : The present study identified spatial patterns between meridians and disease sites. These findings suggest that the constellations of the indications of meridians are primarily associated with the lines of the meridian system. We strongly believe that these findings will further the current understanding of indications of acupoints and meridians.

Labeling Big Spatial Data: A Case Study of New York Taxi Limousine Dataset

  • AlBatati, Fawaz;Alarabi, Louai
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.207-212
    • /
    • 2021
  • Clustering Unlabeled Spatial-datasets to convert them to Labeled Spatial-datasets is a challenging task specially for geographical information systems. In this research study we investigated the NYC Taxi Limousine Commission dataset and discover that all of the spatial-temporal trajectory are unlabeled Spatial-datasets, which is in this case it is not suitable for any data mining tasks, such as classification and regression. Therefore, it is necessary to convert unlabeled Spatial-datasets into labeled Spatial-datasets. In this research study we are going to use the Clustering Technique to do this task for all the Trajectory datasets. A key difficulty for applying machine learning classification algorithms for many applications is that they require a lot of labeled datasets. Labeling a Big-data in many cases is a costly process. In this paper, we show the effectiveness of utilizing a Clustering Technique for labeling spatial data that leads to a high-accuracy classifier.

Industrial Safety Risk Analysis Using Spatial Analytics and Data Mining (공간분석·데이터마이닝 융합방법론을 통한 산업안전 취약지 등급화 방안)

  • Ko, Kyeongseok;Yang, Jaekyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.147-153
    • /
    • 2017
  • The mortality rate in industrial accidents in South Korea was 11 per 100,000 workers in 2015. It's five times higher than the OECD average. Economic losses due to industrial accidents continue to grow, reaching 19 trillion won much more than natural disaster losses equivalent to 1.1 trillion won. It requires fundamental changes according to industrial safety management. In this study, We classified the risk of accidents in industrial complex of Ulju-gun using spatial analytics and data mining. We collected 119 data on accident data, factory characteristics data, company information such as sales amount, capital stock, building information, weather information, official land price, etc. Through the pre-processing and data convergence process, the analysis dataset was constructed. Then we conducted geographically weighted regression with spatial factors affecting fire incidents and calculated the risk of fire accidents with analytical model for combining Boosting and CART (Classification and Regression Tree). We drew the main factors that affect the fire accident. The drawn main factors are deterioration of buildings, capital stock, employee number, officially assessed land price and height of building. Finally the predicted accident rates were divided into four class (risk category-alert, hazard, caution, and attention) with Jenks Natural Breaks Classification. It is divided by seeking to minimize each class's average deviation from the class mean, while maximizing each class's deviation from the means of the other groups. As the analysis results were also visualized on maps, the danger zone can be intuitively checked. It is judged to be available in different policy decisions for different types, such as those used by different types of risk ratings.