Abstract
Recently international organizations such as ISO/TC211, OGC, INSPIRE (Infrastructure for Spatial Information in Europe) make an effort to share geospatial data using semantic web technologies. In addition, smart phone and social networking services enable community-based opportunities for participants to share issues of a social phenomenon based on geographic area, and many researchers try to find a method of extracting issues from that. However, serviceable spatial ontologies are still insufficient at application level, and studies of spatial information extraction from SNS were focused on user's location finding or geocoding by text mining. Therefore, a study of extracting spatial phenomenon from social media information and converting it into geosemantic knowledge is very usable. In this paper, we propose a framework for extracting keywords from micro-blog, one of the social media services, finding their relationships using data mining technique, and converting it into spatiotemopral knowledge. The result of this study could be used for implementing a related system as a procedure and ontology model for constructing geoseem antic issue. And from this, it is expected to improve the effectiveness of finding, publishing and analysing spatial issues.
최근 ISO/TC211, OGC, INSPIRE 등 국제기구들을 중심으로 시맨틱 기술을 활용한 공간정보의 공유 노력이 진행되고 있다. 또한 스마트폰의 대중화와 소셜 네트워킹 서비스의 활성화로 인해 온라인 소셜 커뮤니티에서 이슈를 추출하기 위한 연구들이 이루어지고 있다. 그러나 응용 수준에서 가용한 공간정보 온톨로지는 부족한 실정이며, 소셜 네트워크 서비스에서의 공간정보 추출 역시 텍스트 마이닝을 통한 지오코딩 부분에 집중되어 있다. 따라서 소셜 미디어 정보에서 공간 현상을 추출하여 시맨틱 공간 지식으로 변환하기 위한 방법은 매우 유용하게 활용될 수 있다. 또한 공간 현상을 단순한 빈발 키워드가 아닌 연관 이슈의 형태로 사용자에게 제공함으로써 공간상에 발생하는 이슈에 대한 이해도를 향상 시킬 수 있을 것이다. 따라서 본 논문에서는 소셜 미디어 서비스의 하나인 마이크로 블로그를 기반으로 데이터를 수집하여 데이터 마이닝 기술을 접목하여 연관 이슈를 추출하고, 이를 시공간 지식으로 변환하기 위한 공간 이슈 온톨로지 모델을 제안하였다. 이를 통해 향후 관련 시스템의 개발을 위한 참조모델 및 공간 온톨로지 구축을 위한 모델로써 유용하게 사용될 수 있을 것으로 기대된다.