• Title/Summary/Keyword: spalling force

Search Result 23, Processing Time 0.032 seconds

Properties of Fire Endurance of High Performance RC Column by Loaded Heating Test (고성능 RC 기둥의 재하가열시험에 의한 내화 특성)

  • Kim Kyung Min;Kim Ki Hoon;Hwang Yin Seong;Lee Jae Sam;Lee Seong-Yeun;Han Cheon Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.57-60
    • /
    • 2005
  • This study discusses spalling and fire enduring performance of high performance concrete (HPC) RC column subjected to loading under heating for 3 hours. According to the test, both the plain concrete and the concrete attached with fire enduring PC panel exceed allowable temperature after 60 minutes due to the exposure of steel bar and falling off of concrete resulting from severe spalling failure. It leads to buckling of main bar and at the same time, occurrence of collapse of plain HPC column member is observed after 2 hours and 1 hour 40 minutes's exposure to fire, respectively. On the other hand, HPC applying both PP fiber of 0.1$\%$ by mass of concrete and PP fiber+lateral confinement by metal lath maintains their original cross section, which is satisfied with the 3 hours fire endurance criteria, by discharging internal vapour pressure and enhanced lateral confinement force.

  • PDF

Stability analysis of coal face based on coal face-support-roof system in steeply inclined coal seam

  • Kong, Dezhong;Xiong, Yu;Cheng, Zhanbo;Wang, Nan;Wu, Guiyi;Liu, Yong
    • Geomechanics and Engineering
    • /
    • v.25 no.3
    • /
    • pp.233-243
    • /
    • 2021
  • Rib spalling is a major issue affecting the safety of steeply inclined coal seam. And the failure coal face and support system can be affected with each other to generate a vicious cycle along with inducing large-scale collapse of surrounding rock in steeply inclined coal seam. In order to analyze failure mechanism and propose the corresponding prominent control measures of steeply inclined coal working face, mechanical model based on coal face-support-roof system and mechanical model of coal face failure was established to reveal the disaster mechanism of rib spalling and the sensitive analysis of related factors was performed. Furthermore, taking 3402 working face of Chen-man-zhuang coal mine as engineering background, numerical model by using FLAC3D was built to illustrate the propagation of displacement and stress fields in steeply inclined coal seam and verify the theory analysis as mentioned in this study. The results show that the coal face slide body in steeply inclined working face can be observed as the failure height of upper layer smaller than that of lower layer exhibiting with an irregular quadrilateral pyramid shape. Moreover, the cracks were originated from the upper layer of sliding body and gradually developed to the lower layer causing the final rib spalling. The influence factors on the stability of coal face can be ranked as overlying strata pressure (P) > mechanical parameters of coal body (e.g., cohesion (c), internal fraction angle (φ)) > support strength (F) > the support force of protecting piece (F') > the false angle of working face (Θ). Moreover, the corresponding control measures to maintain the stability of the coal face in the steeply inclined working face were proposed.

Damage of Gyeongju 9.12 Earthquakes and Seismic Design Criteria for Nonstructural Elements (경주 9.12지진의 피해 및 비구조요소 내진설계기준)

  • Lee, Su Hyeon;Cho, Tae Gu;Lim, Hwan Taek;Choi, Byong Jeong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.561-567
    • /
    • 2016
  • After the Gyeong-ju 9.12 earthquake, we found the necessity of seismic design of nonstructural element is important to reduce damages in view of properties and economic losses. This study focused on the investigation of damages including both properties and human beings. It was found that most of the damages are leaking of water pipe line, rupture of glasses, spalling of roof finishing, cracks of building, and falling from roof. It was also found that the seismic design force of nonstructural elements is taking account into the natural periods, amplification factors, response modification factors to forsee inelastic behaviors. From this studies, it is recommended that more studies are necessary on the seismic design force of nonstructural element.

Evaluation of Bursting Behavior in Anchorage Zone of PSC I Girders (PSC I 거더의 정착부 파열거동 평가)

  • Choi, Kyu Chon;Park, Young Ha;Paik, In Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.329-336
    • /
    • 2010
  • An experimental study to evaluate bursting behavior in anchorage zone of the standard PSC I girders (span length : 30 m) has been carried out. The arrangement of bursting reinforcement in anchorage zone of the standard PSC I girders is considered to be designed without accurately reflecting the stress flows in the end zone of the PSC I girders caused by presstressing forces of the tendons. Also, due to excessive arrangement of the bursting bars, the workability of the girder is decreased greatly. In this study, three specimens with the same dimensions as the end zone of the standard PSC I girder are prepared and the experiment is carried out by applying PS forces. The bursting reinforcement of each specimen consists of 100 mm, 200 mm, and 300mm spacings, respectively. The experimental results show that the range of the PS forces to cause crack in the anchorage zone of the specimen are more than 1.6 times of the design PS forces. The bursting cracks occur in the vertical direction on the inside of all specimens. After applying 2.7 times of the design PS force, some of the transverse bursting reinforcements only in the specimen reinforced by 300 mm spacing yielded. The experimental results show that the anchorage zone of the standard PSC I girders arranged by 300 mm spacing of the bursting reinforcements which is the maximum spacing allowed in the road bridge design specifications, can be considered safe enough.

Development of the Life Management D/B System for Concrete Structures in Nuclear Power Plants (원전 콘크리트 구조물의 수명관리 D/B 시스템 개발)

  • 이종석;김도겸;함영승;임재호;송영철;조명석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.637-642
    • /
    • 1998
  • This study was performed to develop effective management system of concrete structures in Nuclear Power Plants. This D/B system includes three kinds of data : 1)visual inspection data(cracking, spalling, etc.) 2) durability data carbonation, chloride attack, etc. 3) in-service inspection data(prestressing force. material properties, etc. ) By using the life management D/B System, the field engineers can easily acquire the information about the various inspection data. repair and accidental histories of structures. This system, will contribute to the efficient life management of concrete structures.

  • PDF

Comparative Study on Material Constitutive Models of Ice (얼음의 재료 모델 적용 타당성 연구)

  • Choung, Joon-Mo;Nam, Ji-Myung;Kim, Kyung-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.42-48
    • /
    • 2011
  • To define ice as a solid material, mathematical and physical characteristics and their application examples are investigated for several materials' yield functions which include isotropic elastic, isotropic elastic-plastic, classical Drucker-Prager, Drucker-Prager Cap, Heinonen's elliptic, Derradji-Aouat's elliptic, and crushable foam models. Taking into account brittle failure mode of ice subject to high loading rate or extremely low temperature, isotropic elastic model can be better practicable than isotropic elastic-plastic model. If a failure criterion can be properly determined, the elastic model will provide relatively practicable impact force history from ice-hull interactions. On the other hand, it is thought that the soil models can better predict the ice spalling mechanism, since they contain both terms of shear stress-induced and hydrostatic stress-induced failures in the yield function.

Compressive strength degrdation model of Ultra high strength under high temperature (고온가열을 받는 초고강도 콘크리트의 압축강도저하 모델 제안)

  • Choe, Gyeong-Choel;Kim, Gyu-Yong;Yoon, Min-Ho;Lee, Young-Wook;Lee, Bo-Kyeong;Kim, Hong-Seop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.26-27
    • /
    • 2014
  • Study on high temperature properties of concrete and internal force estimation of structural member subjected to high temperature mainly applied high temperature strength model based on experimental results with concrete under 40MPa. However, it is reported that degradation of internal force at high temperature and spalling of ultra high strength concrete are higher than that of normal strength concrete. Therefore, this study attempts to propose compressive strength degradation model which is suitable to ultra high strength concrete comparing to existing model by evaluating high temperature properties of ultra high strength concrete.

  • PDF

Experimental investigation and design method of the general anchorage zone in the ring beam of prestressed concrete containment vessels

  • Chang Wu;Tao Chen;Yanli Su;Tianyun Lan;Shaoping Meng
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.485-497
    • /
    • 2024
  • Ring beam is the main anchorage zone of the tendons in the nuclear power prestressed concrete containment vessel (PCCV). Its safety is crucial and has a great influence on the overall performance of PCCV. In this paper, two half-scale ring beams were tested to investigate the mechanical performance of the anchorage zone in the PCCV under multidirectional pressure. The effect of working condition with different tension sequences was investigated. Additionally, a half axisymmetric plane model of the containment was established by the finite element simulation to further predict the experimental responses and propose the local reinforcement design in the anchorage zone of the ring beam. The results showed that the ultimate load of the specimens under both working conditions was greater than the nominal ultimate tensile force. The original reinforcement design could meet the bearing capacity requirements, but there was still room for optimization. The ring beam was generally under pressure in the anchorage area, while the splitting force appeared in the under-anchor area, and the spalling force appeared in the corner area of the tooth block, which could be targeted for local strengthening design.

Experimental and numerical FEM of woven GFRP composites during drilling

  • Abd-Elwahed, Mohamed S.;Khashaba, Usama A.;Ahmed, Khaled I.;Eltaher, Mohamed A.;Najjar, Ismael;Melaibari, Ammar;Abdraboh, Azza M.
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.503-522
    • /
    • 2021
  • This paper investigates experimentally and numerically the influence of drilling process on the mechanical and thermomechanical behaviors of woven glass fiber reinforced polymer (GFRP) composite plate. Through the experimental analysis, a CNC machine with cemented carbide drill (point angles 𝜙=118° and 6 mm diameter) was used to drill a woven GFRP laminated squared plate with a length of 36.6 mm and different thicknesses. A produced temperature during drilling "heat affected zone (HAZ)" was measured by two different procedures using thermal IR camera and thermocouples. A thrust force and cutting torque were measured by a Kistler 9272 dynamometer. The delamination factors were evaluated by the image processing technique. Finite element model (FEM) has been developed by using LS-Dyna to simulate the drilling processing and validate the thrust force and torque with those obtained by experimental technique. It is found that, the present finite element model has the capability to predict the force and torque efficiently at various drilling conditions. Numerical parametric analysis is presented to illustrate the influences of the speeding up, coefficient of friction, element type, and mass scaling effects on the calculated thrust force, torque and calculation's cost. It is found that, the cutting time can be adjusted by drilling parameters (feed, speed, and specimen thickness) to control the induced temperature and thus, the force, torque and delamination factor in drilling GFRP composites. The delamination of woven GFRP is accompanied with edge chipping, spalling, and uncut fibers.

Microstructure and Mechanical Property of In48wt%Sn Solder / Electrolytic Au/Ni/Cu BGA Substrate with Multiple Reflows (리플로우에 따른 In-48Sn 솔더와 전해 Au/Ni/Cu BGA 기판의 미세구조와 기계적 특성)

  • 구자명;김대곤;정승부
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.75-77
    • /
    • 2004
  • Microstructure and mechanical property of In48Sn solder on electrolytic Au/Ni/Cu BGA substrate were investigated with the number of reflows. AuIn and AuIn$_2$ IMCs were formed at the interface solder and pad after 1reflow. An increase of the number of reflows changed AuIn into AuIn$_2$. AuIn$_2$ IMC layer at the interface broke and spalled away into the solder after 3reflows. Shear force decreased with the number of reflows because the weakness of the interface by the spalling of AuIn$_2$ IMC layer.

  • PDF