• Title/Summary/Keyword: space-Time

Search Result 11,164, Processing Time 0.046 seconds

An Efficient Channel Estimation for OFDM Systems with Transmitter Diversity using Space-time Trellis Coding (Space-time Trellis Coding을 이용한 송신다이버시티를 가진 OFDM 시스템에 대한 효율적인 채널 추정 기법)

  • 이상문;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.9B
    • /
    • pp.1243-1250
    • /
    • 2001
  • 송신 다이버시티는 무선통신 시스템의 성능을 개선하기 위해 효과적인 다이버시티 기법이다. 이러한 송신 다이버시티를 위해 설계된 부호화 방식이 space-time coding이다. 본 논문에서는 space-time trellis coding을 이용한 송신 다이버시티를 가진 OFDM 시스템에서 효율적인 채널 추정 기법을 제안하였다. 기존의 방식은 채널의 지연 확산에 따라 계산 량이 매우 증가하는데 비해 본 논문에서 제안된 채널 추정 기법은 채널을 추정하는데 필요한 계산 량이 채널의 지연 확산에 무관하다. 또한 Multi-Level 신호에 대해서도 계산 량이 증가를 일으키지 않고 효과적으로 이용될 수 있다. 채널 추정 기법의 성능을 컴퓨터 시뮬레이션에 의한 BER을 통해 분석하였다.

  • PDF

STUDY ON THE OPERATING CONDITION AND STABILITY OF CONTROL SYSTEM IN THE SPACE OF ADJUSTING PARAMETERS (조정파라미터 공간에서의 제어계 동작점과 안정성에 관한 연구)

  • 최순만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.470-477
    • /
    • 2000
  • The states of control loops in existing actual systems are changed according to time varying conditions of controllest process and other system components. Adjusting control parameters properly at site which is performed generally by Ziegler & Nichols mthod is important for safe and efficient operation, but the method may require much time to adjust and not easy to inexperienced engineers. This study is aimed to propose more handy method to adjust control parameters by plotting operating conditions on the space of adjusting parameters. One loop of model control system without perturbation condition has been adopted and its stability limit was plotted on the coordinates of Gain and Integral time which was acquired after analyzing Nyquist diagrams and time domain responses. The result showed that the sets of adjusting parameters according to critical stability and proper stability could be acquired reasonably through both responses and the curves on parameter space revealed available patterns for the purpose of easy maintenance of control characteristics.

  • PDF

New Design for Linear Complex Precoding over ABBA Quasi-Orthogonal Space-Time Block Codes

  • Ran, Rong;Yang, Jang-Hoon;An, Chan-Ho;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12C
    • /
    • pp.1062-1067
    • /
    • 2008
  • ABBA codes, a class of quasi-orthognal space-time block codes (QoSTBC) proposed by Tirkkonen and others, allow full rate and a fast maximum likelihood (ML) decoding, but do not have full diversity. In this paper, a linear complex precoder is proposed for ABBA codes to achieve full rate and full diversity. Moreover, the same diversity produce as that of orthogonal space-time block code with linear complex precoder (OSTBC-LCP) is achieved. Meanwhile, the size of the linear complex precoder can be reduced by half without affecting performance, which means the same complexity of decoding as that of the conventional ABBA code is guaranteed.

Space-Time Block Coding Techniques for MIMO 2×2 System using Walsh-Hadamard Codes

  • Djemamar, Younes;Ibnyaich, Saida;Zeroual, Abdelouhab
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • Herein, a new space-time block coding technique is proposed for a MIMO 2 × 2 multiple-input multiple output (MIMO) system to minimize the bit error rate (BER) in Rayleigh fading channels with reduced decoding complexity using ZF and MMSE linear detection techniques. The main objective is to improve the service quality of wireless communication systems and optimize the number of antennas used in base stations and terminals. The idea is to exploit the correlation product technique between both information symbols to transmit per space-time block code and their own orthogonal Walsh-Hadamard sequences to ensure orthogonality between both symbol vectors and create a full-rate orthogonal STBC code. Using 16 quadrature amplitude modulation and the quasi-static Rayleigh channel model in the MATLAB environment, the simulation results show that the proposed space-time block code performs better than the Alamouti code in terms of BER performance in the 2 × 2 MIMO system for both cases of linear decoding ZF and MMSE.

Outage Probability Analysis of Space-Time Line Code System (시공간 선 부호 시스템의 아웃티지 확률 분석)

  • Kim, Hyeonsoo;Lee, Juyoung;Yang, Seung Geon;Lim, Seung-Chan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.536-538
    • /
    • 2022
  • Since the invention of a novel diversity technique, namely a space-time line code (STLC), though the previous studies have theoretically analyzed the error rate and ergodic capacity, the outage probability has not been revealed yet. In this paper, we characterize the probability density function of the instantaneous signal-to-noise ratio, and mathematically derive the closed-form expression of the outage probability. Based on numerical simulations, furthermore, we validate the accuracy of the mathematical analysis, and present the insight into the system design and implementation.

  • PDF

SPACE-LIKE COMPLEX SUBMANIFOLDS OF AN INDEFINITE K HLER MANIFOLD

  • Kwon, Jung-Hwan;Pyo, Yong-Soo;Shin, Kyoung-Hwa
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.6
    • /
    • pp.1145-1168
    • /
    • 1999
  • The purpose of this paper is to study the complete submanifolds with restricted space-like and time-like holomorphic bisectional curvatures in an indefinite locally symmetric K hler manifold.

  • PDF

Construction of Visual Space using Relief Texture Mapping (Relief Texture 매핑을 이용한 가상공간 구축)

  • 이은경;정영기
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1899-1902
    • /
    • 2003
  • Recently several methods have been developed for the virtual space construction. Generally, most of the methods are geometric-based rendering technic, but they are difficult to construct real-time rendering because of large data. In this paper, we present a three dimension image-based rendering method that enable a constant speed of real-time rendering regardless of object complexity in virtual space. The Proposed method shows good performance for the virtual space construction with high complexity.

  • PDF

Development of a Software for Re-Entry Prediction of Space Objects for Space Situational Awareness (우주상황인식을 위한 인공우주물체 추락 예측 소프트웨어 개발)

  • Choi, Eun-Jung
    • Journal of Space Technology and Applications
    • /
    • v.1 no.1
    • /
    • pp.23-32
    • /
    • 2021
  • The high-level Space Situational Awareness (SSA) objective is to provide to the users dependable, accurate and timely information in order to support risk management on orbit and during re-entry and support safe and secure operation of space assets and related services. Therefore the risk assessment for the re-entry of space objects should be managed nationally. In this research, the Software for Re-Entry Prediction of space objects (SREP) was developed for national SSA system. In particular, the rate of change of the drag coefficient is estimated through a newly proposed Drag Scale Factor Estimation (DSFE), and is used for high-precision orbit propagator (HPOP) up to an altitude of 100 km to predict the re-entry time and position of the space object. The effectiveness of this re-entry prediction is shown through the re-entry time window and ground track of space objects falling in real events, Grace-1, Grace-2, Tiangong-1, and Chang Zheng-5B Rocket body. As a result, through analysis 12 hours before the final re-entry time, it is shown that the re-entry time window and crash time can be accurately predicted with an error of less than 20 minutes.

Tracking Capability Analysis of ARGO-M Satellite Laser Ranging System for STSAT-2 and KOMPSAT-5

  • Lim, Hyung-Chul;Seo, Yoon-Kyung;Na, Ja-Kyung;Bang, Seong-Cheol;Lee, Jin-Young;Cho, Jung-Hyun;Park, Jang-Hyun;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.3
    • /
    • pp.245-252
    • /
    • 2010
  • Korea Astronomy and Space Science Institute (KASI) has developed a mobile satellite laser ranging (SLR) system called ARGO-M since 2008 for space geodesy research and precise orbit determination technologies using SLR with mm level accuracy. ARGO-M is capable of night tracking and daylight tracking for which requires spatial, spectral and time filters due to high background noises. In this study, characteristics and specifications of ARGO-M are discussed and its tracking capabilities of night and daylight tracking are analyzed for STSAT-2B and KOMPSAT-5 through link budget. Additionally false alarm and signal detection probabilities are also analyzed depending on spectral and time filters for daylight tracking for these satellites.