Browse > Article
http://dx.doi.org/10.5140/JASS.2010.27.3.245

Tracking Capability Analysis of ARGO-M Satellite Laser Ranging System for STSAT-2 and KOMPSAT-5  

Lim, Hyung-Chul (Korea Astronomy and Space Science Institute)
Seo, Yoon-Kyung (Korea Astronomy and Space Science Institute)
Na, Ja-Kyung (Korea Astronomy and Space Science Institute)
Bang, Seong-Cheol (Korea Astronomy and Space Science Institute)
Lee, Jin-Young (Korea Astronomy and Space Science Institute)
Cho, Jung-Hyun (Korea Astronomy and Space Science Institute)
Park, Jang-Hyun (Korea Astronomy and Space Science Institute)
Park, Jong-Uk (Korea Astronomy and Space Science Institute)
Publication Information
Journal of Astronomy and Space Sciences / v.27, no.3, 2010 , pp. 245-252 More about this Journal
Abstract
Korea Astronomy and Space Science Institute (KASI) has developed a mobile satellite laser ranging (SLR) system called ARGO-M since 2008 for space geodesy research and precise orbit determination technologies using SLR with mm level accuracy. ARGO-M is capable of night tracking and daylight tracking for which requires spatial, spectral and time filters due to high background noises. In this study, characteristics and specifications of ARGO-M are discussed and its tracking capabilities of night and daylight tracking are analyzed for STSAT-2B and KOMPSAT-5 through link budget. Additionally false alarm and signal detection probabilities are also analyzed depending on spectral and time filters for daylight tracking for these satellites.
Keywords
ARGO-M; link budget; false alarm probability; signal detection probability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Arnold, D. A. 2003, Cross Section of ILRS Satellites (ILRS technical report)
2 Degnan, J. J. 1993, Contributions of Space Geodesy to Geodynamics: Technology, Geodynamics Series, 25, 133   DOI
3 Degnan, J. J. & Klein, B. J. 1974, ApOpt, 13, 2397
4 Degnan, J. J. 1994, in Proceedings of the 9th International Workshop on Laser Ranging Instrumentation, ed. J. M. Luck (Canbera: Australian Government Publishing Service), p.8
5 Lee, S. H. 2010, private communication
6 Hall, F. F. Jr., Post, M. J., Richter, R. A., Lerfald, G. M., & Derr, R. E. 1983, Air Force Geophysics Laboratory Report (Cirrus Cloud Model, in Atmospheric Transmittance Radiance: Computer Code LOWTRAN), AFGL-TR-83-0187
7 Neumann, G. A., Cavanaugh, J. F., Coyle, D. B., McGarry, J., Smith, D. E., Sun, X., Torrence, M., Zagwodski, T. W., & Zuber, M. T. 2006, in Proceedings of the 15th International Workshop on Laser Ranging, eds. J. M. Luck, C. Moore, & P. Wilson (Canbera: EOS Space Systems), p.451
8 Pratt, W. K. 1967, Laser Communications Systems (New York: John Wiley and Sons), pp.121-135
9 Ricklefs, R. L. 2006, Consolidated Laser Ranging Prediction Format Version 1.01 (ILRS technical report)
10 Smith, D. E., Zuber, M. T., Sun, X., Neumann, G. A., Cavanaugh, J. F., McGarry, J. F., & Zagwodzki, T. W. 2006, Science, 311, 53, doi: 10.1126/science.1120091   DOI
11 Yang, F., Xiao, C., Chen, W., Zhang, Z., Tan, D., Gong, X., Chen, J., Huang, L., & Zhang, J. 1999, Science in China, 42, 198   DOI
12 Zuber, M. T., Smith, D. E., Zellar, R., Neumann, G. A., Sun, X., Connelly, J., Matuszeski, A., McGarry, J. F., Ott, M., Ramoslzquierdo, L., Rowlands, D. D., Torrence, M. H., & Zagwodzki, T. W. 2010, SSRv, 150, 63, doi: 10.1007/s11214-009-9511-z   DOI