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SPACE-LIKE COMPLEX SUBMANIFOLDS
OF AN INDEFINITE KAHLER MANIFOLD

JunGg-HwaN KWON, YONG-S00 Pyo, AND KYOUNG-HWA SHIN

ABSTRACT. The purpose of this paper is to study the complete sub-
manifolds with restricted space-like and time-like holomorphic bi-
sectional curvatures in an indefinite locally symmetric Kahler man-
ifold.

1. Introduction

The theory of indefinite complex submanifolds of an indefinite com-
plex space form is one of interesting topics in differential geometry and
it has been investigated by many geometers from the various different
points of view ([1]-[3], [6], [7], [9] and [15]).

Now, let M be an n-dimensional space-like complex hypersurface
of an (n + 1)-dimensional indefinite Kahler manifold M’ of index 2.
We denote by H'(P’,Q’) the holomorphic bisectional curvature of M’
for any holomorphic planes P’ and Q’. In particular, the holomorphic
bisectional curvature H'(P’,Q’) for any two space-like holomorphic
planes P’/ and Q' is said to be space-like and that for any space-like
holomorphic plane P’ and any time-like holomorphic plane @’ is said
time-like. We call it simply a space-like or time-like holomorphic bisec-
tional curvature. Then the first author and Nakagawa (8] proved the
following theorem.

THEOREM A ([8]). Let M be ann(2 2)-dimensional complete space-
like complex hypersurface of an (n + 1)-dimensional indefinite Kihler
manifold M’ of index 2. If the ambient space is locally symmetric and if
it has non-negative space-like holomorphic bisectional curvatures and
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non-positive time-like holomorphic bisectional curvatures, then M is
totally geodesic.

Let M’ be an (n+ p)-dimensional indefinite Ké&hler manifold of con-
stant holomorphic sectional curvature ¢ and of index 2p, and let M be
an n-dimensional space-like complex submanifold of M’. We introduce
the concept of the normal curvature of M and the normal curvature
operator of M (see Section 5). The time-like totally real bisectional
curvature is closely related to the normal curvature of M. It seems
to us to be interesting to give an information about the squared norm
|alz = ha of the second fundamental form a of M. The Chern-type
problem in the space-like Kahler geometry is as follows;

PRrROBLEM. For an n-dimensional complete space-like complex sub-
manifold M of an (n + p)-dimensional indefinite complex space form
M;}“’(c) of constant holomorphic sectional curvature ¢ of index 2p
(> 0), does there exists a constant h in such a way that M is totally
geodesic, provided hy > A7

In [7] and [16], the authors recently treated with this problem in-
dependently from the mutually different point of view, and they ob-
tained partial solutions under the additional conditions, respectively.
The purpose of this paper is to prove the following theorem. In order
to fulfill this theorem, we generalize Theorem A in the case where M is
a space-like complex submanifold and then, by applying this result, re-
search the Chen-type problem from the view point of the holomorphic
bisectional curvatures.

THEOREM. Let M be an n-dimensional complete space-like com-
plex submanifold of an (n+ 2)-dimensional indefinite locally symmetric
Kahler manifold M’ of index 4. Assume that the normal connection
of M is proper. If M’ has non-negative space-like holomorphic bisec-
tional curvatures and non-positive time-like holomorphic bisectional
curvatures, then M is totally geodesic.

2. Semi-definite Kihler manifolds

This section is concerned with recalling basic formulas on semi-
definite Kihler manifolds. Let M be a complex m(2 2)-dimensional
semi-definite Kahler manifold equipped with the semi-definite Kahler
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metric tensor g and almost complex structure J. For the semi-definite

Kabhler structure {g, J}, it follows that J is integrable and the index -
of g is even, say 2¢(0 < ¢ £ m). In the case where ¢ is contained in

the range 0 < ¢ < m, M is called an indefinite Kihler manifold and

the structure {g,J} is called an indefinite Kahler structure. And, in

particular, in the case where ¢ = 0 or m, M is only called a Kdhler
manifold and the structure {g, J} is called a Kdihler structure. We can

choose a local field {Ey} = {Ea,E4+} = {E1,...,Em, E1x,...,Ep+}

of orthonormal frames on a neighborhood of M, where Es« = JE4

and A* = m + A. Here the indices A, B,... run from 1 to m and the
indices o, 3, ... run from 1 to 2m = m* We set Uy = \/-(E'A tE4x)
and Uy = ——(EA + iE4~), where i is the imaginary unit. Then {U,}
constitutes a local field of unitary frames on the neighborhood of M.
We remark here the fact that Uy is space-like or time-like is equivalent
to the result that E 4 is space-like or time-like. This is a complex linear
frame which is orthonormal with respect to the semi-definite Kébhler
metric, that is, g(Ua,Up) = €464, where

€a=~lorlaccordingas 1SASq or ¢g+1S A< m.

Let {04}, {0ap} and {©.3} be the canonical form, the connection
form and the curvature form, respectively on M with respect to the
local field {E} = {E4, Es~} of orthonormal frames. Then we have
the following structure equations.

o+ €805 N5 =0, Bap — Oaege =0,
B _
0a*ﬁ + 0(1[3* = 0, 0&,0 + 0,6(! = O, 004,5“ — Oﬁa"‘ -_— O,

(2.1) dBop + Z €x0oy Ny = @9,3,
Y

1
2 €7€5Kag—y§0 A 05,

~,8

@aﬁ =

where K,p,s denotes the components of the Riemannian curvature
tensor R of M.

Now, let {wa} = {w1,...,wn} be the dual coframe field with respect
to the local field {Ux} of unitary frames on the neighborhood of M.



1148 J.-H. Kwon, Y. S. Pyo, and K. H. Shin

Then {wa} consists of complex valued 1-forms of type (1,0) on M
such that wa(Ug) = €4dap and wi,...,wn,w1,...,wn are linearly
independent. The semi-definite Kéahler metric g of M can be expressed
as g =2 ,eawa ® Wa. Associated with the frame field {U4}, there
exist complex valued forms wap, which are usually called connection
forms on M such that they satisfy the structure equations of M:

dwp+ Y epwapAwp =0, wap+wpa=0,
B

(2.2) dwaB+ Y €cwac Awep = Qas,
c

Qap = Z ecepRipcpwe Nwp,
c,D

where Qap (resp. Rjipcp) denotes the curvature form (resp. the
components of the semi-definite Riemannian curvature tensor R) of
M. So, by (2.1) and (2.2), we obtain

(2.3) Rizpep = —{(KaBcp + Ka-Bc+p) +i(Ka-Bcp — Kapc+D)}-

The equation (2.2) implies the skew-Hermitian symmetry of {2 4 g, which
is equivalent to the symmetric condition

(2.4) Ripep = Rpapc-

Moreover, the first Bianchi identity > 5 epQap A wp = 0 is given by
the exterior differential of the first equation and the third equation of
(2.2), which implies the further symmetric relations

(2-5) RABCD = RACBD = RDCBA = RDBCA~

Next, relative to the frame field chosen above, the Ricci tensor S of
M can be expressed as follows;

S = ZGAGB(SABWA Q@wp+ Sipwa ®wB),
A,B

where Sy5 =Y c€cRccas = Spa = Sip- The scalar curvature r of
M is also given by r =23 4 €4S44.
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The components R 3p¢p.r and Ripcp.5 of the covariant derivative
of the Riemannian curvature tensor R are given by

(2:6)

> ex(Rapop.pws + Ripop.s@s) = dRipcp
E
- Z ee(RepepWEA + Ripcpwes + Ripepwec + RiporWED).-
— .

The second Bianchi formula is given by

(2.7) Ripep:e = Ripep:c-

Let M be an m-dimensional semi-definite Kahler manifold of index
2¢(0 £ ¢ £ m). A plane section P of the tangent space T, M of M at
any point z is said to be non-degenerate, provided that the restriction of
gz|p to P is non-degenerate. It is easily seen that P is non-degenerate if
and only if it has a basis {X, Y} such that g(X, X)g(Y,Y)—g(X,Y)? #
0. If the non-degenerate plane P is invariant by the complex structure
J, then it said to be holomorphic. It is also trivial that the plane P is
holomorphic if and only if it contains a vector X such that g(X, X) # 0.
For the non-degenerate plane P spanned by X and Y in P, the sectional
curvature K(P) of P is usually defined by

J(R(X, Y)Y, X)
g(X,X)g(Ya Y) - g(X, Y)2 .

K(P)=K(X,Y)=

The holomorphic plane spanned by space-like or time-like vectors X
and JX is said to be space-like or time-like, respectively. The sectional
curvature K (P) of the non-degenerate holomorphic plane P is called
the holomorphic sectional curvature, which is denoted by H(P). The
semi-definite Kahler manifold M is said to be of constant holomor-
phic sectional curvature if its holomorphic sectional curvature H(P) is
constant for any non-degenerate holomorphic plane P and any point
on M. Then M is called a semi-definite complex space form, which
is denoted by M"(c) provided that it is of constant holomorphic sec-
tional curvature ¢, of complex dimension m and of index 2¢(= 0). It
is seen in Wolf [17] that the standard models of semi-definite complex
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space forms are the following three kinds: the semi-definite complex
projective space CP,;"(c), the semi-definite complex Euclidean space
Cy or the semi-definite complex hyperbolic space CH*(c), according
asc > 0,c=0orc < 0. For any integer ¢(0 < g < m), it is seen by [17]
that they are complete simply connected semi-definite complex space
forms of dimension m and of index 2q. The Riemannian curvature
tensor Rjpcp of M = M7"(c) is given by

[
Ripep = 56360(5/13500 +64coBD).

Given two holomorphic planes P and @ in T, M at any point z in
M, the holomorphic bisectional curvature H(P, Q) determined by the
two planes P and ¢} of M is defined by

_ g(R(X,JX)JY,Y)
(2.8) H(P.Q) = 7%, X)0(%,7) — 9(X, V)7

(
where X (resp. Y) is a non-zero vector in P (resp. Q). It is a simple
matter to verify that the right hand side in (2.8) depends only on P
and @, so, it is well defined. It may be also denoted by H(P,Q) =
H(X,Y). It is easily seen that H(P,P) = H(P) = H(X, X) =: H(X)
is the holomorphic sectional curvature determined by the holomorphic
plane P, where X is a non-zero vector in P. We denote by P4 the
holomorphic plane [E4, JE 4] spanned by E4 and JE4 = E-. We set

H(PA,PB):H(EAEB)=HAB, A +# B,
H(Pa, Pa) = H(Ps) = Hap = Hy.

The holomorphic bisectional curvature Hap(A # B) and the holomor-
phic sectional curvature H 4 are given by

9(R(E4, JEA)JEB,EB)

Hapg = —€epegK -, A#B,
AB 9(Ea, E2)o(En, Ep) A€sKsa-BB #
i, = SREATENIENES) _ o

9(Ea,Ea)g(Ea, Ea) )

By (2.3), we have
(2.9) Hap =eaeBRiapp (A# B), Ha=Rjzppa-

Now, we introduce here a fundamental property for the generalized
maximum principal due to Omori [12] and Yau [19].
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THEOREM 2.1 ([12], [19]). Let M be a complete Riemannian man-
ifold whose Ricci curvature is bounded from below on M. If a C?-
function f is bounded from above on M, then, for any positive constant
€, there exists a point p such that

Vi) <e, Af(p)<e, sup f—e< f(p),

where V f is the gradient of the function f and A denotes the Laplacian
operator on M, and sup f denotes the supremum of f.

In order to apply the generalized maximum principle to the practical
problem the Liouville-type theorem due to Choi, the first author and
Suh [5] is very useful. Here a slight more extended property than their
theorem is introduced. Since it is proved by the careful checking of
their proof, the following theorem is quoted without proof.

THEOREM 2.2 ([5]). Let M be a complete Riemannian manifold
whose Ricci curvature is bounded from below and let F' be any poly-
nomial of one variable f with constant coefficients cg,- - ,Ck+1 such
that

F(f) =cof" + len—l + e Ckfn-k + Ck+1,

wheren > 1, n —k > 0 and ¢ > cgy1. If a C?-function f satisfies
Af 2 F(f), then we have F(sup f) <0.

3. Space-like complex submanifolds

This section is concerned with space-like complex submanifolds of
an indefinite Kahler manifold. First of all, the basic formulas for the
theory of space-like complex submanifolds are prepared.

Let M’ be an (n + p)-dimensional connected indefinite Kahler man-
ifold of index 2p(> 0) with the indefinite Kahler structure (¢’, J'). Let
M be an n-dimensional connected space-like complex submanifold of
M’ and let g be the induced Kahler metric tensor on M from ¢g’. We
can choose a local field {Us} = {Uy,...,Un4p} of unitary frames on a
neighborhood of M’ in such a way that restricted to M, Uy, ..., U, are
tangent to M and the others are normal to M. Here and in the sequel,
the following convention on the range of indices is used throughout this
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paper, unless otherwise stated:

ABC,---=1,...,n,n+1,...,n+p;
4,0,k -=1,...,n; T,Y,2,--=n+1,...,n+p

With respect to the frame field {Ua}, let {wa} = {wi,w;} be its dual
frame field. Then the indefinite Kahler metric tensor ¢’ of M’ is given
by ¢ =23 4€awa ® Wa, where {e4} = {€;,€;}. The canonical forms
w4 and the connection forms w4 p of the ambient space M’ satisfy the
structure equations

dwyg + ZEBwAB Awgp=0, wap+wap=0,

B
'
(3.1) deB+Z€CWAC/\wCB:QABv
C
' ’ _
AB = Z ecepRzpcpwe AWp,
C.D

where Qg (resp. R’;p.p) denotes the curvature form with respect
to the frame field {U4} (resp. the components of the indefinite Rie-
mannian curvature tensor R') of M’. Restricting these forms to the
submanifold M, we have

(3.2) wg =0,

and the induced Kahler metric tensor g of M is given by

g= 2Z€jo ® Wj.
Jj

Then {U;} is a local unitary frame field with respect to this metric and
{w;} is a local dual frame field due to {U;}, which consists of complex
valued 1-forms of type (1.0) on M. Moreover, wi,...,Wn,@1,...,Wn
are linearly independent, and {w;} is the canonical forms on M. It
follows from (3.2) and Cartan’s lemma that the exterior derivatives of
(3.2) give rise to

(33) Wy = Z fjhijija hijz = hjiz.
J
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The quadratic form a = Z“ j €2€i€h;;"w; ®w; U, with values in the
normal bundle on M in M’ is called the second fundamental form of the
submanifold M. From the structure equations for M , the structure
equations for M are similarly given by

dw; + Zejwij Awj; =0, wij + Wi = 0,
J
dwij + Zekwik Nwij = Qij, Qij = Zekelejk;cuk Ay,
k k,l

(3.4)

where 2 = (£;5) (resp. Rj;yr) denotes the curvature form with respect
to the unitary frame field {Us} (resp. the component of the semi-
definite Riemannian curvature tensor R) of M.

Moreover, the following relationships are obtained:

(3.5) dwgy + Z €EWaz NWay = gy, Dy = Z ex€1 Rz piwr AT,
z k,l

where €2, is called the normal curvature form of M. For the Riemann-
ian curvature tensors R and R’ of M and M’, respectively, it follows
from (3.1)-(3.4) that we have the Gauss equation

(3.6) Rijur = Ry — Z ezhjihi®.
And by means of (3.1)-(3.3) and (3.5), we have

(37) R:Eykl_ = Rzliykl_ + Z Gjhkjm_ﬁjly.
J

The components S;; of the Ricci tensor S and the scalar curvature r
of M are given by

(3.8) S5 = exRy; — i,
k

(3.9) =2 Z'ejekR%jkl_c - h2 5

5k
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where h; =2 = = Zm x €z€khik®he;® and hy = Ej ejhj32. Now, the
components h,]k and hm i° of the covariant derivative of the second
fundamental form of M are given by

310 ka ijk Wk+h )
k

= dhijx — Z ek(hijwki -+ hikmwk]’) + Z 6yhiijmy.
k Y

Then, substituting dh;;* in this definition into the exterior derivative
of (3.3) and using (3.1)-(3.4) and (3.10), we have

(3.11) hije®™ = hik;®,  hyp® = = —R.

Fijk*

Similarly, the components hq;jx® and h, ;" (resp. h; ;5" and h;;5") of
the covariant derivative of h;;x” (resp. h,;i *) can be defined by

(3.12) Zez(hijkzxwl + hijkl_zwl) = dh;;"
l

=3 e(hujr®wii + hak®wiy + hig"wk) + ) eyhijktway,
1 Yy
(3.13) Z €] (hij];lmUJl + h,LJEfzwl) = dhz]Em
l

- Z fl(hlelei + hz”;mwu + h’z]l_wwlk) + Z Gyhij];ywzy.
l Y

Differentiating (3.10) exteriorly and using the properties d?> = 0,
(3.4), (3.5), (3.8), (3.10) and (3.11), we have the following Ricci formula
for the second fundamental form

(3.14)
hijr® = hijie” ,  hiEr” = hm”

-z T _
hijei” — hijie” = E &r(Ripizhes® + Rigjrhri® E ey R zhis?-
T y

In particular, let the ambient space M’ be an (n + p)-dimensional
semi-definite complex space form M:_:;p (¢) of constant holomorphic
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sectional curvature ¢ and of index 2(s+t) (0 S s<n, 0S¢ S p).
Then, we get '

c —
Rijir =§€j€k(5ij5kz + 6ibj1) — Zfagh]‘kmhilz,
o]
o .
Sij =5(n+ Deidij = hig®, 7= cn(n+1) = 2hy , hy® =0,
C
hajir® =35 (enhis" 0kt + €shjr™du + €5hri"051)
- Z 6y‘fr(hr'llmhjki“l + hrjmhkiy + hrkmhijy)ﬁﬂy.
T

4. The Laplacian operatof

In this section, the Laplacian of the squared norm of the second
fundamental form on a space-like complex submanifold of an indefinite
Kahler manifold will be calculated. Let M’ be an (n + p)-dimensional
indefinite Kéhler manifold of index 2p and let M be an n-dimensional
space-like complex submanifold of M’. Let f be any smooth C2-
function on M. The components f; and f; of the exterior derivative df
of f are given by

df = Z & fiwi + f3W05).

Moreover, the components f;; and f;; (resp. f;; and f;) of the covari-
ant derivative of f; (resp. f;) can be defined by

D eil(figws + fi@y) = dfs = Y € fjwii,
i i
Y eilfyyws + f5@5) = dfs = ) €5 f50ii-
j j
The Laplacian of the function f is by definition given as

(4.1) Af = Zej(fﬁ + f3) = 2Zejfﬁ.
7 7

Now, we calculate the Laplacian of the squared norm hy = |ajs
of the second fundamental form a on M. By (3.13) and the second
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equation of (3.11), we have

> byt + hii@)
l

— ! _ ' _ 3 ! _ . ! —— - ! _
= dRa‘:ijk + Z el(Rz‘:ljkw“ + Ry ypwis + Riijf(‘)lk) Z fngijkwmy
1 y

= —dR,zljk + Z eA(R:,EAjEwAi + R;‘ciAl?:wAJ + R;;; 40 Ak)
A

Tij
— ) €aR5. cw —Ee(R’. cwyi + RL. cwyi + RL, . Wyk)
Al fi5p%Wx A Y\ gy iyl Fiyk™YI zijgvyk
A y
+ Z flR;'ijwaly
1
from which together with (2.6), (3.1) and (3.3), it follows that we have
3 (b w + hyptw)
== Z EA(R:T:ijI?::AwA + RliijE:AwA)

- E eyel zy]kh’” wy +R:uyk 4l Yy +Rm]yhkl wl)
Yl

/ T
+ E flﬁrR,:ij,;hrl wy.
lLr

Comparing the coefficients of w; in the above equation, we have

(4.2)
h'LJElz == Zey Fyjk lly + R:myl—c Jl + Z 6"" rz]k
On the other hand, from (3.14) we get
(4.3)
h“ijk[z - h‘ijl-kz = Z (Rrkzlhmz + R'rk]l Z Gy lkya:
- Z fyf'r(hikyﬁ'r‘lyhrjz + hjkyhrlyhri )
y,r

- Z eyerhkrmﬁrlyhijya

y,7
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where we have used (3.6) and (3.7). By (4.2) and (4.3), we obtain
(4.4)

T __ / Y ' R.Y
h‘ijkl - RCZ!’LJlk ZGy zyglh’k +Rwyzlh3k +R5yklh'¢.7 )

+ Z €r }z',r'_ﬂklh'M + Rmklhrjw + R h‘ )

Figl

“‘Zeyfr ik h'r'lyhrj +hjkyhrlyh'r1ix)
Y,r
e Z eyerhkrzhrlyhijy.

y,r

The matrix A = (A,®) of order p defined by A,® = Y=, - €:€;h;;° hi¥
is a Hermitian one. Since M is space-like and the normal space is
time-like, it is a positive semi-definite Hermitian matrix of order p.
Summing up k = [ in (4.4), we have

(4.5)

_x
E :ekhzjkk

- Z ekR:mjk :k Z eyek(Rmy]k 7'ky + Rzyzk Jky + Rz‘:ykkhljy)

Yk

+ Z erl(Rlekhh + RlzkkhlJ + Rl”khlkm)
k,l

=3 en(hiithis® + higlhe®) = > ey AyThigV.
k

Yy

Moreover by (4.1), we see
(4.6)

Ahy = Z €:€j€k { (Z ezhijwﬁijm> + <Z ezhijxﬁijw) } .
\ =z kk T kk

i,k
The first term in the right hand side of (4.6) is given by

Z ex€s€ier(Pijir™his™ + hijk"hie® + hiTRiE" + hi;"hi”)-

z7i7j7k
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And the second term is expressed as
Z €m€i€j€k(hiﬂ;kzﬁijm + hij,‘cz.ﬁijfcm + hijkwﬁijkm + hijzﬁijk,'cz).
x,i,5,k
On the other hand, by (4.2), we have

I R I By ' By
kahijkk = ZekRiijk:k nyek(Riyjkhzk + Ry yighix )
k k .k

E : /
+ er,-Rﬁthrkx.
k,r

Since A is the positive semi-definite Hermitian matrix of order p, its
eigenvalues )\, are all non-negative real valued functions on M and it
is easily seen that we have

47 S A =Tra=—hy, h?2TrA2=3 22 %hgz.

Substituting these three relations into (4.6), we obtain the formula for
the Laplacian of the squared norm hy of the second fundamental form
on M. That is, we have

(4.8)

_ e P 7. . IPUPEE - W
Ahg =2|Vals — 2 Z ezezejekRﬁj,—c:kh,] -2 E ezelejekR;xk%kh”
w)i,j,k :Eliij’k
- € ! _h, YR T _ yp!
8 Z ezeyeze]ekRiyjkhkl hij 2 Z €x€y€rAg Riykk

z,y,%,5,k z,y,k
. _
+4 Z 6I€¢€j6qu,-ciﬂ-hklmhijx
m)i’j’le
+4Y " ejen Ry phi® — dhg — 2TT A,

VL

where we have used (2.4), (2.5), (4.5), (4.6) and hy = 3, ; ei€jhi;2hii?,
where the squared norm |Va|z of the covariant derivative Va of the
second fundamental form a on M is defined by

(4.9) |Vals = Z ex€i€jen(hijrhijn” + Rijp"hii”)-

z71:7.7.7":
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5. Normal curvature tensor

In this section, we introduce the concept the normal curvature tensor
on the space-like complex submanifold in an indefinite K&hler manifold
and research its properties.

Let M’ be an (n+p)-dimensional indefinite K&hler manifold of mdex
2p equipped with indefinite Kéhler structure {¢’,J'} and let M be
an n-dimensional space-like complex submanifold of M’ endowed with
induced Kahler structure {g,J} from the indefinite Kahler structure
{¢’,J'}. Let us denote by V+ the normal connection on M, namely,
it is the mapping of TM x NM into NM defined by

V4(X,V) = V1 xV = the normal part of V'xV

for any tangent vector field X in TM and any normal vector field V
in NM, where V’ is the Kahler connection on M’ and TM and NM
are the tangent bundle and the normal bundle of M, respectively (cf.
[14]). The normal curvature tensor R on M is defined by

RHX, V)V = (V:xViy - Viy Vi = Vi)V,
where X, Y € TM and V € NM. If it satisfies
RYX,Y)V = [ g(X,JY)J'V,

where f is any function on M, then the normal connection V+ is said
to be proper. In particular, if f is a non-zero constant or zero on M,
then it is said to be semi-flat or flat, respectively.

REMARK 5.1. For the justification of the concept of flatness and
semi-flatness, see Chen [4] and Yano and Kon [18], respectively.

On the other hand, the proper case is treated by Ki and Nakagawa
[6].

REMARK 5.2. In the semi-Riemannian geometry, the shape operator
A on the indefinite Einstein hypersurface M of index 2s in M i!(c) can
be not necessarily diagonalized. By the classification of the self-adjoint
endomorphisms of a scalar product, we have the following properties;

(1) A is diagonalizable,
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(2) A is not diagonalizable, but either €,,1hs < 0 or h2 = 0 and not
totally geodesic.

An indefinite Einstein hypersurface is said to be proper if the shape
operator A is diagonalizable ([6]). The terminology, “proper” of the
normal connection is named after the concept.

Now, in order to consider the normal curvature transformation, we
see the local version of the normal curvature tensor. By means of
(3.7), we can define a linear transformation T on the np-dimensional
complex vector space E"P consisting of tensors (£.x) at each point on
M by

TN (Eok) = (Mek)s Mok = ) y€tReyiilyt.
yl

We denote by (R,;°*) the matrix of the linear transformation T. The
linear operator defined by the np x np Hermitian matrix (Ryl’k) is
called the normal curvature operator on M. Then Ty is the self-adjoint
operator with respect to the definite metric canonically defined on =™
(cf. [7]). We assume that the matrix (R,;**) is diagonalizable. In this
case, we can choose suitably an indefinite unitary frame field {Us} =
{U;,U.} in such a way that, it satisfies

(51) Riykl— = eszfmkézlk = szkfzkézyékla

where every eigenvalue f,x of Ty is a real valued function on M. By
(3.7) and (5.1), we have

(52) eriykl_ = Exekfmk‘sxyékl - Z ejh’kaﬁjly'
J

REMARK 5.3. In the space-like complex hypersurface M, the normal
connection is always proper.

6. Locally symmetric spaces

In this section, let M’ be an (n + p)-dimensional indefinite Kahler
manifold of index 2p. For two holomorphic planes P’ = [X, J'X] and
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Q' =[Y,J'Y], where X and Y are orthogonal vectors, the holomorphic
bisectional curvature H'(P’,Q’) = H'(X,Y) on M’ is defined by
g (R(X,J'X)J'YY)

9'(X, X)g'(Y,Y)

H'(P,Q")=H'(X,)Y) =

Assume that M’ is locally symmetric, the normal connection of M is
proper and it satisfies the following two conditions:

(¥1) The space-like holomorphic bisectional curvature is bounded
from below by a;.

(x2) The time-like holomorphic bisectional curvature is bounded
from above by as.
Then M’ is said to satisfy the condition (x) if it satisfies the above
conditions (1) and (*2).

Let M be an n-dimensional space-like complex submanifold of M'.
For the local field {E4, E4-} of orthonormal frames associated with
the manifold chosen in Section 2, we have by (2.9)

HI(Pg{aPIé) = H,(Ej>Ek) = H; ik = ejekR Gk
H'(P.,P,)=H'(E.,Ex) = H,,, = fszRkac.
for the holomorphic‘plane P} = [E4, J'E4]. Then it satisfies

!
ij 2 a1, Hy < ap.

REMARK 6.1. Let M’ be an (n + p)-dimensional indefinite complex
space form M[}“’(c) of index 2p and of constant holomorphic sectional
curvature ¢. Then M’ is locally symmetric and it satisfies the condition
(%) and we may consider a; = ag = 5 if ¢ is non-negative and a; =

¢, ag = 5 if ¢ is non-positive.

First of all, we estimate Ahg from the above on the space-like com-
plex submanifold M. In order to estimate the fourth term and the fifth
one in the right hand side of (4.8), we prepare for the basic formulas
and a few of properties of the normal curvature operator T defined
on the submanifold.

Let (M’, ¢') be an (n + p)-dimensional indefinite Kahler manifold of
index 2p and let M be an n-dimensional space-like complex submani- -
fold of M’. Now, we check the relation between the normal curvature
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and the totally real bisectional curvature H'(P’,Q’) for a space-like
holomorphic plane P’ and a time-like holomorphic plane Q' in M’.
Accordingly, we have by (5.2)

(6.1) ok = ~Ripp = —€sekfor + ) e;hr;"his".
J

Between the holomorphic bisectional curvature and the normal cur-
vature, we get the following relation. By (6.1) and the condition (x2),
the normal curvature satisfies

(62)  for=Hl— Y €hii"hi;" Saz— Y €hi;"his®
7 7

from which we can estimate the fourth term and the fifth one in the
right hand side of (4.8) as follows;

- _ . /o YT
the fourth term = —8 E €x€y€i€; ekRi;yjkhk'L hij
$7y7ilj7k

=-8" Z €x€y€i€ €L <€$€jf:cj6zy6jk — Zelhﬂmhlky> hkiyhijw
m’y,i’j)k l
T 2 2
= —8 Z €z€i€jijh¢jmhijx + SZ fjfkhjl'c hk}

T,1,J gk

=8 Z €i€j <a2 - Z ekhjkmﬁjkz) hi;®hi;® + 8ha

z,1,] k

2
= —8aghs + 8hy — 82 (Z hjkzﬁjkm> )

z,j k

where the second equality follows from (5.2) and the fourth inequality
is derived by (6.2). For real numbers zi,...,Zn, since it is easily seen
that Y0 z4% 2 %(EZ‘ZI T,)?, the last term of the anve expression
can be estimated from the above by —% > (3g k Bik"hik®)?, we have

1
(6.3) the fourth term < -8 <a2h2 —hs + 5h22> .
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On the other hand, let A be the positive semi-definite Hermitian
matrix defined by (4y7) = (3; , hjx"h;x?) and let A; be its eigenvalue.
Then the fifth term can be estimated as follows;

the fifth term = -2 Z Az(szlejykl_g ='“2Z)‘$R,i:ckl?:
z,k

z,y,k

< 2a9 Z Az = 2nas E Az
z,k z

with the help of (+2), from which it follows that we have by (4.7)
(6.4) the fifth term < —2nash,.

Next, we estimate the sixth term and the seventh one in the right
hand side of (4.8). For the sake of the estimation, we consider the
curvature operator 7" on M’. From the symmetric relation (2.5), on
the n?-dimensional complex vector space E;’z =T, M xT, M€ at each
point = on M which consists of symmetric tensor (¢;;), we can define
a linear transformation 7" by

T'(&;5) = (m5), mij = ZekelR;‘cijz kL-
k1

We denote by (Rj,) the matrix of the linear transformation T". The
linear operator T” defined by the n? x n? matrix (R},") is the called the
curvature operator on the submanifold M. The curvature operator on
the Kéhler manifold plays an important role in Nakagawa and Takagi
[10]. Since T” is the self-adjoint operator with respect to the metric
canonically induced on E;‘z, every eigenvalue R}, of T" is a real valued
function. So, we have

(6.5) Ry = Riy™* =¢;exRix0;0u, R); =R, -:=H'(E,E;). "
17kl 2 7kY2 % 2

i3
By (6.5) and the condition (*1), we have

Rij = R = HI(Ei,Ej) = H’Zj g a.

1457
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Now, we estimate the sixth term of the right hand side of (4.8). By
(6.5), we see

the sixth term = —4 Z R;—ciﬂ—hklmﬁz’jz
z,8,5,k,1
=—4 Z R} ;6ir81hi"hi;®.

x7i7j,k7l

From which together with (6.5), it follows that we have

(6.6 the sixth term = —4 hz Zh.:% < darh.
3 g

%]

The matrix (h;;%) is negative semi-definite Hermitian one, whose eigen-
values \;’s are non-positive real functions, i.e., hﬁz = MA;d;j. Since
> j A; = hg, the seventh term is estimated as follows;

the seventh term = 4 Z R’ijk 42 )\jRéjk,-c.
4,5,k ]

Thus, we have
(6.7) the seventh term < 4na;ho.

Under the above preparation, we can prove the following proposi-
tion.

PROPOSITION 6.1. Let M be an n-dimensional complete space-like
complex submanifold of an (n + p)-dimensional indefinite Kahler man-
ifold M' of index 2p. Assume that M' is locally symmetric and it
satisfies the condition (x). If the normal connection of M is proper,
then the following statements hold:

(1) In the case where p=1 or 2 and 2(n + 1)a; — (n + 4)ag 2 0, M
is totally geodesic.

(2) In the case where p 2 3 and 2(n + 1)a; — (n + 4)agz > 0, if
the scalar curvature on M is bounded from above, then there exists a
negative constant h in such a way that M is totally geodesic, provided
hs > h. v '
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- Proof. Since the ambient space is locally symmetric and the squared
norm |Vals of the covariant derivative Va of the second fundamental
form o is non-positive by (4.9), the equation (4.8) is estimated by (6.3),
(6.4), (6.6) and (6.7) from the above as follows;

Ahg £ —8(a2h2 — hg + %h22>-—2na2h2+4a1h2+4na1h2—4h4—-2TrA2.

Accordingly, by (4.7), we obtain
(6.8) Ahg £ Agha? + Ayphg,

where the coefficients Ag and A; are constants given by
2
Ag = ;(2}) —-5), A1 = 2{2(TL + 1)01 - (n + 4)‘0,2}.

Now, since the space-like holomorphic bisectional curvature of M is
bounded from below by a constant, the Ricci curvature of M is bounded
from below. In fact, we have

S.73=Z ]kk_z “kk-—ZH]k_nal

with the help of (3.6). Let f be the non-negative functlon defined by
—hy. Then by (6.8), we have

AfZeof? +eif +ea = F(f), co=—Ag, c1 = Ay, cg =0,

where F' is the polynomial of the variable f with the constant coeffi-
cients.

In the first assertion, the coefficients satisfy co > 0 = ¢, which
implies that we can apply Theorem 2.2 to the function f and hence we
get F(sup f) < 0. Accordingly, we have sup f < 0. Since the function
[ is non-negative, it vanishes identically on M, which means that M
is totally geodesic.

In the second assertion, we remark that the first coefficient cg is
negative. Since the scalar curvature on M is bounded from above by
the assumption, the function f is bounded from above. In fact, we see .

r=23 Rjyz =23 Hj+2f 2 2n%a, +2f

gik 3k
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with the help of (3.9). Applying Theorem 2.1 to the function f, we
obtain F(sup f) < 0, from which we get

c
sup f=0 or sup fz__ci>0'

For a negative constant h such that A > %, suppose that hy > h. Then
we get inf hy 2 h and hence sup f < ~h < —2 , which means that
sup f = 0. Hence f vanishes identically on M, which means that M is
totally geodesic. It completes the proof. d

In the case where M is a hypersurface, it is natural that the normal
connection is proper. So, the first assertion of Proposition 6.1 proves
the following

COROLLARY 6.2. Let M’ be an (n+1)-dimensional indefinite Kéhler
manifold of index 2 and let M be an n-dimensional complete space-like
complex hypersurface of M'. Assume that M’ is locally symmetric
and it satisfies (*) with 2(n + 1)a; — (n + 4)ag 2 0. Then M is totally
geodesic.

REMARK 6.2. Corollary 6.2 is given by Kown and Nakagawa [8].

Proof of the main theorem. Since the fact that M’ has non-positive
time-like holomorphic bisectional curvature is equivalent to the fact
that it satisfies the condition (x2) with a; = 0. Furthermore, it satisfies
the condition (1) with a; = 0. Accordingly, by*Proposition 6.1(1), M
is becomes totally geodesic. O

COROLLARY 6.3. Let M’ be an (n+2)-dimensional indefinite Kahler
manifold of index 4 and let M be an n-dimensional complete space-like
complex submanifold of M'. Assume that M’ is locally symmetric and
it satisfies (*) with a1 = a2 = 0. If the normal connection of M is
proper, then M is totally geodesic.

REMARK 6.3. For the complex coordinate system (24, 22n+1) in
C’?"H’ let M = M(b;) be the complex hypersurface in given by the
equation

Zon+1 = Z(zj + ijj*)z, i*=3+n
J
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for any complex number b; such that |b;| = 1. Then it is seen in [3] and
[15] that M is a family of complete indefinite complex hypersurfaces of
index 2s, which are Ricci flat and not flat. Thus we see ¢; = 0, but it is
not totally geodesic. This means that in Proposition 6.1 the condition
that M is space-like is essential.
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