• 제목/요약/키워드: space vehicle

검색결과 1,593건 처리시간 0.035초

정지궤도위성 발사위치와 궤도투입에 관한 고찰 (Geostationary Satellite Launch Site and Orbit Injection)

  • 김동선
    • 항공우주시스템공학회지
    • /
    • 제18권3호
    • /
    • pp.27-33
    • /
    • 2024
  • 누리호의 성공과 차세대 우주발사체의 개발 목표를 통하여 국내 정지궤도위성 발사능력은 1톤에서 3.7톤으로 향상될 것으로 기대되며 화성, 소행성 등의 우주탐사에도 1톤 이상의 실질적인 능력을 제공해 줄 수 있을 것으로 예측된다. 고흥 우주발사장은 태양 동기궤도 소형위성에 최적화되어 있으며 타국의 영공을 침범하지 않아야 된다는 필수적인 전제조건으로 인하여 정지궤도위성 발사장으로는 다소 부족한 면이 존재한다. 초기 궤도 투입상태로부터 궤도면 회전을 위한 에너지의 증가가 필수적이며 운용 측면에서의 복잡성과 함께 경제성의 감소요인이 된다. 그러므로 차세대 우주발사체의 개발과 병행하여 지구 적도부근의 해외 지상발사장 또는 해상발사지점의 획득과 최적화된 정지궤도위성 투입에 관한 궤도 구성에 관한 연구가 계속되어야 한다.

M-Space를 이용한 자동 주차를 위한 주차 경로 생성 (Motion Planning of the Car-like Vehicle in the Parking Space by the Motion Space)

  • 김달형;정우진
    • 로봇학회논문지
    • /
    • 제3권1호
    • /
    • pp.1-8
    • /
    • 2008
  • Automatic parking assist system is one of the key technologies of the future automobiles. Control problem of a car-like vehicle is not easy due to the nonholonomic constraints. In this paper, a practical solution for planning a car-parking path is proposed according to the proposed motion space (M-space) approach. The M-space is the extension of the conventional configuration space (C-space). A collision-free, nonholonomic feasible path can be directly computed by the M-space conversion and a back-propagation of reachable regions from the goal. The proposed planning scheme provide not a single solution, but also a candidate solution set, therefore, optimization of the parking path can be easily carried out with respect to performance criteria such as safety, maneuvering, and so on. Presented simulation results clearly show that the proposed scheme provides various practical solutions.

  • PDF

Superpixel-based Vehicle Detection using Plane Normal Vector in Dispar ity Space

  • Seo, Jeonghyun;Sohn, Kwanghoon
    • 한국멀티미디어학회논문지
    • /
    • 제19권6호
    • /
    • pp.1003-1013
    • /
    • 2016
  • This paper proposes a framework of superpixel-based vehicle detection method using plane normal vector in disparity space. We utilize two common factors for detecting vehicles: Hypothesis Generation (HG) and Hypothesis Verification (HV). At the stage of HG, we set the regions of interest (ROI) by estimating the lane, and track them to reduce computational cost of the overall processes. The image is then divided into compact superpixels, each of which is viewed as a plane composed of the normal vector in disparity space. After that, the representative normal vector is computed at a superpixel-level, which alleviates the well-known problems of conventional color-based and depth-based approaches. Based on the assumption that the central-bottom of the input image is always on the navigable region, the road and obstacle candidates are simultaneously extracted by the plane normal vectors obtained from K-means algorithm. At the stage of HV, the separated obstacle candidates are verified by employing HOG and SVM as for a feature and classifying function, respectively. To achieve this, we trained SVM classifier by HOG features of KITTI training dataset. The experimental results demonstrate that the proposed vehicle detection system outperforms the conventional HOG-based methods qualitatively and quantitatively.

우주발사체 개발사업을 위한 기술성능관리 프로세스 (A Process of the Technical Performance Management for A Space Launch Vehicle R&D Project)

  • 유일상;조동현;김근택
    • 시스템엔지니어링학술지
    • /
    • 제10권2호
    • /
    • pp.71-79
    • /
    • 2014
  • To enhance success probability of a system development project, its overall risk level should be minimized through systematically managing schedules, costs, and technical performances. However, Attempts to manage technical performance compared to numerous efforts to control costs and schedules in such projects are deficient. Particularly, a space launch vehicle, a large complex system, development project is much less likely to meet its technical performance objectives due to its technological difficulty, along with schedule delay and cost overrun. The technical performance management (TPM) is a method for tracking and managing technical progress in order to achieve technical performance targets within schedule and budget. In this paper, we investigate applications of the TPM in several space launch vehicle development projects. Then we propose and validate the TPM process to achieve a successful mission in such projects.

Parking Space Recognition for Autonomous Valet Parking Using Height and Salient-Line Probability Maps

  • Han, Seung-Jun;Choi, Jeongdan
    • ETRI Journal
    • /
    • 제37권6호
    • /
    • pp.1220-1230
    • /
    • 2015
  • An autonomous valet parking (AVP) system is designed to locate a vacant parking space and park the vehicle in which it resides on behalf of the driver, once the driver has left the vehicle. In addition, the AVP is able to direct the vehicle to a location desired by the driver when requested. In this paper, for an AVP system, we introduce technology to recognize a parking space using image sensors. The proposed technology is mainly divided into three parts. First, spatial analysis is carried out using a height map that is based on dense motion stereo. Second, modelling of road markings is conducted using a probability map with a new salient-line feature extractor. Finally, parking space recognition is based on a Bayesian classifier. The experimental results show an execution time of up to 10 ms and a recognition rate of over 99%. Also, the performance and properties of the proposed technology were evaluated with a variety of data. Our algorithms, which are part of the proposed technology, are expected to apply to various research areas regarding autonomous vehicles, such as map generation, road marking recognition, localization, and environment recognition.

요구조건 기준의 개발 수행을 위한 우주발사체 개발사업의 실제적인 요구조건-검증 관리 체계 (Practical Requirements and Verification Management for Requirements-based Development Process in Space Launch Vehicle Development Project)

  • 조동현;장준혁;유일상
    • 시스템엔지니어링학술지
    • /
    • 제19권1호
    • /
    • pp.56-63
    • /
    • 2023
  • For the success of system development, it is necessary to systematically manage the requirements that are the basis of system development and its verification results. In order to follow the principles of SE(Systems Engineering)-based V&V(Verification&Validation) process, requirements can be managed by securing the requirements and their establishments, design compliances, and verification compliances according to the system development lifecycle. Especially, in a large-complex system research and development project, such as a space launch vehicle development project, many participants establish, verify, and validate numerous requirements together during the project. Therefore, logical and systematic requirements management, including guarantee of data integrity, change history, and traceability, is very important for multiple participants to utilize numerous requirements together without errors. This paper introduces the practical requirements and verification management for the requirements-based development process in the space launch vehicle development project.

전기펌프사이클 엔진 등 민간분야 우주발사체 신기술고찰 (New Technologies of Space Launch Vehicles including Electric-Pump Cycle Engine)

  • 정승민;김귀순;오세종;최정열
    • 한국항공우주학회지
    • /
    • 제44권2호
    • /
    • pp.139-155
    • /
    • 2016
  • 본 논문에서는 최근의 우주발사체 기술 발전에 대한 소개가 이루질 것이다. 민간 분야에서의 우주개발 사업들의 사업 모델 및 핵심 기술에 대하여 간단한 정리하고, 핵심 기술의 발전 사항들에 대하여 좀 더 구체적으로 살펴볼 것이다. 특히 Rocketlab 사가 개발 중인 저가 고성능 경량 우주발사체 Electron 에 사용될 예정인 전기펌프 사이클 엔진에 대하여 좀 더 구체적으로 살펴보고, 이들이 로켓 과학자들에게 주는 시사점에 대하여 살펴볼 것이다.

우주발사체 고체추진기관 추진제 조성연구 (Development of the solid propellant for the rocket motor of the space launch vehicle)

  • 송종권;원종웅;최성한;서혁
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.185-188
    • /
    • 2009
  • 우주발사체 상단 고체추진기관은 고고도에서 위성체가 목표 궤도에 진입할 수 있도록 추력을 제공하는 역할을 하며, 적용되는 혼합형 추진제는 진공 및 방사선이 노출되는 우주환경에서 고성능은 물론 기계적 성질 및 내탄도 특성에서 변형이 없어야 한다. 본 논문에서는 우주발사체 상단 고체추진기관용 혼합형 추진제에 대한 조성 개발 및 표준모터와 고공환경 모사 시험설비를 이용한 성능시험평가에 대한 내용을 기술하였다.

  • PDF

Vibratory loads and response prediction for a high-speed flight vehicle during launch events

  • Kim, Jinhyeong;Park, Seoryong;Eun, Wonjong;Shin, Sangjoon;Lee, Soogab
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권4호
    • /
    • pp.551-564
    • /
    • 2016
  • High-speed flight vehicles (HSFVs) such as space launch vehicles and missiles undergo severe dynamic loads which are generated during the launch and in in-flight environments. A typical vehicle is composed of thin plate skin structures with high-performance electronic units sensitive to such vibratory loads. Such lightweight structures are then exposed to external dynamic loads which consist of random vibration, shock, and acoustic loads created under the operating environment. Three types of dynamic loads (acoustic loads, rocket motor self-induced excitation loads and aerodynamic fluctuating pressure loads) are considered as major components in this study. The estimation results are compared to the design specification (MIL-STD-810) to check the appropriateness. The objective of this paper is to study an estimation methodology which helps to establish design specification for the dynamic loads acting on both vehicle and electronic units at arbitrary locations inside the vehicle.