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An autonomous valet parking (AVP) system is designed 
to locate a vacant parking space and park the vehicle in 
which it resides on behalf of the driver, once the driver has 
left the vehicle. In addition, the AVP is able to direct the 
vehicle to a location desired by the driver when requested. 
In this paper, for an AVP system, we introduce technology 
to recognize a parking space using image sensors. The 
proposed technology is mainly divided into three parts. 
First, spatial analysis is carried out using a height map 
that is based on dense motion stereo. Second, modelling of 
road markings is conducted using a probability map with 
a new salient-line feature extractor. Finally, parking space 
recognition is based on a Bayesian classifier. The 
experimental results show an execution time of up to    
10 ms and a recognition rate of over 99%. Also, the 
performance and properties of the proposed technology 
were evaluated with a variety of data. Our algorithms, 
which are part of the proposed technology, are expected to 
apply to various research areas regarding autonomous 
vehicles, such as map generation, road marking 
recognition, localization, and environment recognition. 
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I. Introduction 

Over the past decade, autonomous driving technologies have 
made outstanding advancements. As a result, many companies 
including Google, Mercedes, BMW, and Volvo have presented 
autonomous driving demonstrations, with a plan to initiate their 
sales of autonomous vehicles by 2020. Also, they predicted that 
fully automated driving vehicles could be ready by 2025 [1]. 
Furthermore, in five states in the USA, including Nevada, 
experiments on autonomous vehicles have been legally 
approved, and many other states are also considering doing the 
same [2]. 

An autonomous valet parking (AVP) system is a complete 
autonomous unmanned vehicle system that drives the car to a 
safe parking lot and parks it there on behalf of the driver. Also, 
the system drives the car to a position where the driver can 
board it [3]. An AVP system drives a car at a low speed or parks 
it within a limited area, such as a parking area, or surrounding 
road. This is an advanced form of the currently available 
automatic parking system, and it is expected to become an 
integral part of the first generation of commercial autonomous 
vehicles. 

The technologies necessary to realize an AVP system include 
technology to control the vehicle; explore and recognize the 
environment around the vehicle; and determine an appropriate 
parking maneuver for a designated space. Also, an AVP system 
must secure high reliability in its recognition and decision 
technologies since it has to find a parking space and park a car 
without the aid of a driver. 

This study aims to develop a suitable parking space 
recognition technology that is sufficiently reliable for an AVP 
system. The target system must not only find an available 
parking space, but it must also decide whether the space would  
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Fig. 1. Proposed parking space recognition algorithm and its 
results: (a) block diagram of proposed method, (b) IPI 
and recognition results; green box is empty slot and 
red boxes are occupied spaces, and (c) salient-line 
probability map overlaid with height map coded by 
color: blue, green, and red are road surface, curbs (or 
lower objects), and obstacles, respectively. 
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be suitable; that is, whether the space is for disabled persons 
only, whether the type of space matters, and whether there is 
sufficient space.  

Figure 1 shows the vision-based parking space recognition 
technology proposed in this paper. The technology (algorithm) 
is primarily divided into three parts. The first step is a spatial 
analysis of the vehicle by using a height map (HM), which is 
obtained through dense motion stereo and map fusion 
techniques and provides information about the vehicle’s height. 
This process is carried out by a background thread because the 
results are static information and require much computation. 
The next step is parking space detection and analysis using a 
new salient-line extraction and its probability map. In particular, 
this paper proposes a new line extractor with non-separable 
kernel estimation and fast convolution for the salient line 
extraction. The last step combines the spatial and road-marking 
data to identify a parking space based on a Bayesian classifier. 
The results of this paper show a real-time execution time of up 
to 10 ms and a reliability of over 99%. 

This paper is organized as follows. Section II discusses 
related research trends. Sections III through VI describe the 
details of the proposed technologies. Section VII presents and 
discusses the experimental results. Finally, Section VIII 
provides some concluding remarks. 

II. Related Works  

For parking space recognition, the following two 
technologies are required: recognition of an empty space and 
recognition of a parking lot. Thus, these technologies can    
be classified into space recognition, parking-space marking 
recognition, and recently, a combination of the two. 

Space recognition technology is used to find an empty space 
for parking. Most parking-assist system products currently 
available in the market adopt this method. This is categorized 
by space-recognizing sensors; the most common of which is an 
ultra-sonic sensor [4]–[5], although range sensors such as 
LiDAR (light detection and ranging) sensors [6]–[7] and 
microwave radar sensors [8]–[9] are also used. Recently, 
research on vision-based space recognition techniques has been 
actively conducted. In the initial stage, this technique adopted 
stereo vision technology using two cameras [10], and 
nowadays, motion-stereo vision technology based on a mono 
camera is also used [11]–[12]. This technology is divided   
into feature-based sparse reconstruction [11] and dense 
reconstruction [12]. The dense reconstruction technology is 
known for its superior performance [12]. 

Parking space marking recognition technology is used to 
recognize the lines dividing a parking lot using vision 
technology. Usually, images taken by wide-angle cameras are 
converted into inverse perspective images (IPIs). Since parking 
lots consist of several straight lines, transforms may be used to 
locate such lines. For example, Hough [13] and Radon [14] 
transformations can be used. In addition, the characteristics of 
the corner lines [15] and a pattern matching technology [16] 
are also examined and used. 

A combination of space and parking-space data is useful to 
determine an available parking space. Recently, the technology 
to combine range sensor and vision information was 
introduced [16].  

Finding a parking space by recognizing space and parking 
spaces is essential for an AVP. In addition, legal matters, such 
as spaces dedicated to the disabled, are also considered; 
moreover, low obstacles, such as a parking lot stopper or curb, 
which partially block a vehicle’s entrance, need to be 
considered when developing technologies to determine the 
appropriate parking method. The technologies proposed in this 
paper are fully vision-based and can handle a variety of parking 
space types and obstacles of various heights.  
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Fig. 2. HM building: (a) coordinate system used in this paper (attached picture shows experimental vehicle and camera mounting
positions), (b) and (c) are rectified stereo pair from IPI, (d) estimated disparity map, (e) native HM, and (f) improved HM using
modified TMF. Note that poor quality of original map has been significantly improved. 
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III. Spatial Segmentation through HM  

The height information from objects that are realized to be 
on the road surface is very important in building a perception 
of the related environment. This paper proposes a spatial 
analysis method that makes use of an HM. Our recent research 
[17] provided the technology for effective HM generation 
using dense-motion stereo from IPIs. Notably, the study 
proposed effective stereo rectification from IPIs and a fusion 
method using a modified temporal median filter (TMF). This 
section briefly describes how to make an HM using IPIs and 
dense-motion stereo efficiently, and then proposes a spatial 
segmentation method based on height information. 

1. HM Building  

HM generation using dense-motion stereo technology 
commonly consists of the following four steps: obtaining a 
rectified stereo image pair at the previous and the present time 
using structure from motion (SFM), estimating a disparity map, 
mapping 3D points obtained by triangulation into a grid map, 
and map fusion to improve the quality of the map [12]. 

In particular, a high-precision HM can be efficiently obtained 
using an IPI, which is converted to remove the projective 
distortion of the road surface [17]. In general, an IPI can be 
calculated by a homographic and linear transformation. 
However, this approach may cause a blind area near the vehicle 
and is barely able to estimate camera parameters. Accordingly, 
it is appropriate to transform directly from a camera’s intrinsic 
and extrinsic parameters [17].  

Figure 2 illustrates the HM building process. First, {V}, {C}, 
and {P} are the coordinate frames of the vehicle, camera, and 
projective plane, respectively. Second, {O} is a frame lain on 

the intersection position of the projected plane {P} and the 
extended vector of the camera’s optical center. Finally, {S} is 
the map’s origin frame defined by the starting point of the 
vehicle’s movement. The transformation matrix of an IPI, HIPI, 
is defined by the following expression [17]: 

  I C 1
V PIPI W .F H T P                (1) 

Here, I
W ( )F   is a non-linear function obtained from the 

camera’s intrinsic calibration to convert the world coordinate 
into an image coordinate. Furthermore, PP is the set of all 
points of the projection area in the plane {P}; C 4 4

V
T   is 

the camera’s transformation matrix with basis {V}, and can be 
calculated based on the camera’s extrinsic calibration. Also, the 
camera parameters of an IPI for triangulation in stereo can be 
derived from this geometric information [17]. 

The stereo rectification ((b), (c)) of an IPI pair can simply be 
approximated by rotation about the optical center, and it can be 
determined using the SFM technique [17]. The disparity map 
(d) is estimated using the rectified image pair. Moreover, 3D 
coordinates are calculated by triangulation and mapped onto 
the grid map based on frame {S} through quantization. At this 
time, each cell of the grid takes only the maximum value of the 
height data to be mapped to each cell.  

As shown in Fig. 2(e), the generated grid map is of poor 
quality due to the wide field-of-view. However, the use of a 
map fusion technique can dramatically improve the quality. 
This paper uses a grid-map fusion technology based on a 
modified TMF (f) [17]. The method is a simple but effective 
sorting-based TMF. The input data is inserted into a buffer in 
descending order to maintain the buffer’s status. If the amount 
of inserted data reaches the buffer’s limitation, then the 
maximum and minimum values are removed to retain data 
consistency [17].  
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Fig. 3. Spatial segmentation: (a) spatial segmentation result, (b) 
HM overlaid with recognition results, and (c) successfully 
recognized parking space beside flowerbeds. 
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2. Spatial Segmentation 

The spatial segmentation of the surrounding space of a 
vehicle can be achieved by a relatively simple method thanks 
to the high quality of the HM previously described. In this 
paper, spatial segmentation is classified into three categories 
according to the heights of the road surface, low obstacles, and 
high obstacles. The road surface is defined to be the space in 
which the vehicle can travel freely; low obstacles form the 
border of the road, such as sidewalks, flowerbeds, curbs, and so 
on; and high obstacles are represented by objects such as 
parked vehicles and trees. A region growing method can 
effectively separate a space by using a seed value to represent 
the height of each category, because the map has only height 
information, as shown in Fig. 3. Next, the contour values of the 
low obstacles include the salient-line feature (Section IV) to 
process the road boundary. This process makes it possible to 
recognize parking spaces located next to road borders. 

IV. Salient-Line Extraction 

Parking space markings are usually drawn on a road surface 
 

in straight lines of a fixed thickness. This section proposes a 
method for efficiently searching for straight lines having a 
specific thickness. Figure 4 describes the motivation for this 
technique. As is well known, the convolution response of the 
symmetrical input signal (①) to the same signal (②) has a 
maximum peak at the center (③). Hence, the center position of 
the input signal (⑤) can be found by using local maxima 
detection (④). Since the most similar signal in all directions of 
a straight line is a circle with a diameter equal to the thickness 
of the line, in this paper, we propose to use a pillbox kernel 
having the same diameter as the thickness of the line. More 
particularly, this section introduces fast convolution techniques 
for the pillbox kernel and morphological extrema filter (MEF) 
for robust peak detection (Fig. 4(e)). The proposed method, as 
shown in Fig. 4, represents a very robust performance against 
the input signal error and high-intensity noise. 

1. Pillbox Kernel Estimation and Fast Convolution 

The pillbox (or disk) kernel (Fig. 5(a)) is mainly used as a 
smoothing filter and is defined as  

 
2 2

2
pillbox

1
 if ,

( , ) π
0 otherwise,       

u v r
u v r

   


K         (2) 

where, u and v are coordinates based on the center of the kernel, 
and r is the radius of the kernel. Approximately 2(2r + 1)2 
arithmetic operations per pixel are required for the convolution 
operation of such a 2D kernel. In a recent study, Elboher 
announced a very efficient Gaussian kernel filtering technique 
using a staked integral image and the separability property of 
the Gaussian kernel [18]. The separability property is that a 2D 
kernel, –K, is said to be separable if it can be decomposed as 
the convolution of two 1D kernels, v and h, such that 

. K v h  Namely, a 2D kernel is a matrix of rank one. 
 

Fig. 4. Responses of proposed salient-line extractor: characteristics for variety of input signals, such as (a) idea, (b) narrow, (c) wide,
and (d) high-intensity noise; here, each row is response of ① input signal, ② convolution kernel, ③ convolution, ④MEF, and 
⑤ local maxima. In particular, (e) MEF helps to find peak of convolution responses, and has sparse-kernel mask (shown in case 
of K = 4). 
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Fig. 5. Estimated pillbox kernel: (a) native pillbox kernel in case 
of r = 100 (rank = 61), proposed estimated kernel in cases
of (b) N = 1, (c) N = 2, and (d) N = 3; these have M = 5. 
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In this paper, we propose a way to extend Elboher’s method 
for a general non-separable 2D kernel. First, the symmetric 1D 
kernel can be approximated by the sum of the “weighted 
slices” [18] as follows: 

1

if ,
( ) ( ), ( )

0 otherwise.

M
m m m

m m
m

w p x p
u W x W x



  
  


h  (3) 

Here, W(x) is the “weighted slices” function, M is the order of 

the weighted slices, w is a weight, and p is a partition size. The 

optimum parameters, (w, p), of the weighted slices can be 

determined by finding the value to minimize the l2 norm of the 

output error. In addition, the output is easily calculated by an 

integral sum [18].  
The non-separable kernel with rank R is the sum of the 

separable kernel of as much as R. Therefore, the kernel can be 
approximated as the sum of a dominant separable kernel    
(N  R) as follows: 
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Here, nK  is an nth separable 2D kernel assumed to be sorted 

in descending order by the magnitude of each singular value, 

and N is the order of the dominant separable kernels. In (4), 

v(v) and h(u) are the vertical and horizontal 1D kernels, 

respectively. Substituting (3) into (4), it is possible to obtain a 

final approximate expression, such as the following: 

 

Fig. 6. Fast convolution algorithm through estimated pillbox kernel.
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Here, V(v) and H(u) are the vertical and horizontal weighted 
slice functions, respectively. The examples of the estimated 
pillbox kernel obtained by (5) are shown in Fig. 5. Also,  
Table 1 shows the optimal parameters for the case shown in 
Fig. 5. In addition, the fast convolution algorithm using (5) is 
shown in Fig. 6. The proposed algorithm is an O(1) algorithm; 
that is, it takes only about 6NM operations per pixel. For 
example, the operation efficiency is 40 times the native kernel 
in the case r = 15, N = 2, and M = 4. 

2. MEF and Straight-Line Modeling 

This paper proposes a new MEF to effectively detect the 
peak values, as shown in Fig. 4(e). MEF gain is calculated 
from a mask with K pairs, and is determined using the 
following numerical expression: 

 
    

 

C C
0

j π
C

MEF max min ,

f .or

k K+k
k <K

k K
k

= p p p p

p = p re


 



   
   (6) 

Here, pC is the value of the center of the kernel, pk is the value 
of the kth kernel mask, and r is the kernel radius, which is the 
same as the pillbox. MEF has a sparse-circle mask whose 
radius is r, where each filter mask is symmetric with respect to 
the point pC. A positive filter gain is applied to detect a bright 
marking (most road marking); whereas, a negative gain is 
applied in the case of a dark marking. As shown in Fig. 4 (④), 
MEF helps to detect the peak accurately to make the pillbox 
convolution response more sharp. As the next step, to locate the 
peak, a local maxima approach is conducted followed by a 
hysteresis threshold [19].  

A Radon transform is applied for straight-line modeling of 
detected peaks. A Radon transform consists of an integral of a 
function over straight lines, and can find the line parameters 
effectively and accurately [14]. The following steps are taken  
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Table 1. Optimal parameters of estimated pillbox kernel in case of M = 5 and r = 100. 

N (p, w) for H(u) (q, z) for V(v) MSE* 

1 
(100, 0.169453), (97, 0.317627), (87, 0.258585),  

(73, 0.166367), (54, 0.129960) 

(100, 0.167997), (97, 0.318749), (87, 0.258850),  

(73, 0.165857), (54, 0.129053) 
0.2792 

(100, 0.285734), (93, 0.182810), (87, 0.110683), 

(52, –0.032190), (27, –0.008107) 

(82, 0.136443), (75, 0.153445), (68, 0.656909), 

(51, 0.636268), (32, 0.275134) 
2 

(77, –0.013927), (76, 0.382068), (67, 0.765396), 

(54, 0.692644), (40, 0.505191) 

(99, 0.218989), (94, 0.180884), (68, –0.166268), 

(51, –0.169536), (32, –0.073390) 

0.2012 

(100, 0.062297), (87, 0.171360), (68, 0.267790), 

(51, 0.316682), (33, 0.223372) 

(100, 0.379187), (91, 0.197857), (85, 0.155494), 

(97, 0.355243), (32, –0.023153) 

(100, –0.430637), (97, –0.352791), (68, 0.325662), 

(51, 0.356790), (33, 0.223243) 

(97, 0.231413), (66, –0.321408), (72, –0.242799), 

(51, –0.376739), (34, –0.329831) 
3 

(100, 0.415388), (91, –0.326408), (76, –0.559394), 

(49, 0.282192), (32, 0.422305) 

(100, 0.520380), (91, –0.115296), (84, –0.939500), 

(48, 0.173419), (32, 0.443222) 

0.1692 

*MSE is mean squared error between native kernel and estimated kernel. 

 

 

Fig. 7. Salient-line extractor characteristics: (a) input image for brick road with strong shadow, (b) ground truth generated by retouching,
(c) proposed salient-line extractor result, (d) Canny edge detector result, in which optimal parameters were found manually, (e)
Radon space of salient-line (c), and (f) Radon space of edge (d). Note that salient-line extractor has successfully extracted road
marking in difficult case. Also it was represented by small data set. 
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to improve the straight-line model obtained by the Radon 
transform process: finding and integrating lines that have a 
similar slope and that are within a certain distance, and then 
applying straight-line fitting to find optimal line parameters.  

Figure 7 shows the characteristics of the proposed detector in 
a situation where there is a brick road with a strong shadow. 
The salient-line extractor is compared with a Canny edge 
detector that has its parameters manually tuned (σ	=	5.1). Many 
of the existing algorithms found the space marking by using 
edge detection techniques [13]–[14], [16]. Despite using a 
Canny edge detector and optimum parameters, which is  
known to be robust, the result of the edge detection shows that 
much noise is generated. On the other hand, the proposed 
algorithm shows not only that it is able to dramatically remove 
such noise, but that it is also able to find a significantly 
improved peak in Radon space; moreover, the relatively small 
number of pixels it detects could benefit its computational 

efficiency several times over. 

V. Salient-Line Probability Map (SPM) Building  

The salient-line extraction technique can effectively detect 
road markings, as described in Section IV. However, as shown 
in Fig. 8, the extraction results may also contain noise due to 
objects such as parked vehicles, curbs, flowerbeds, and so on. 

This section describes a method to remove such noise. In  
an IPI, since distortion of a road surface is removed, any 
remaining lines representing road markings keep their shape. 
However, those lines representing non-road markings vary in 
shape (length and slope) relative to the camera position (in our 
study, there were four cameras attached to the test vehicle). It is 
from such a property that we devise a method to determine 
those lines that represent road markings. 

Assuming lines are extracted while the vehicle is moving, 
we can attempt to form groups of lines that are representative  
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Fig. 8. SPM building example: upper row is input images with 
detected salient-lines at difference times; lower row is 
SPM overlaid with HM; red lines are determined as road 
marking; grey lines are matched line history; and blue 
lines are its mean value. 
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of a single object or marking. Considering a single such line 
group, we can then investigate the distribution of the shapes of 
the lines within this line group, and from this, we can 
determine how likely (in terms of a probability) it is that this 
particular line group is representative of an actual road marking. 
The distribution of the shapes of lines within a line group is 
defined to be an SPM. 

The following describes the SPM procedure. First, we take 
the coordinates of the end points of a line and map them onto 
{S} using the following equation: 

 V I
S S V I .=x T T x                  (7) 

Here, Sx  and 
4 2

I
x   are homogeneous vectors of the end 

points of a straight line in {S} and in {I} (image coordinate 
frame), respectively; V

ST  is the relative position of the vehicle 
obtained from the vehicle’s wheel speed sensors; and I

VT  is a 
mapping from {V} onto {I}. 

In the next step, the end points of each line segment are 
compared with information contained within the HM, and any 
line found not to be a part of the road surface is removed. The 
remaining lines are then grouped, and it is at this point that only 
the last line to have entered a group is then used for comparison 
against any subsequent new line attempting to join the same 
group. The following discriminant is used to determine 
whether a new line should be accepted into a line group: 

  M2, 1,2 M S STrue if min

False otherwis .

,

e

i k
xi kD

 


  


 


L L L LΡ Ρ
 

 (8) 

Here, 
2 2L   is a matrix containing two end point vectors 

of a line. Namely, M
iL  is the ith column vector on the SPM, 

and S
kL  is the kth column vector obtained by (7). In addition, 

MLΡ  and SLΡ  denote the slope of the line in the SPM and 
the image, respectively; and x  and   are the threshold 
values for the distance between the end points and slope of the 
line, respectively.  

Lastly, when a candidate line for a line group is matched to 
the group, its line information is added and the probability of 
the line group is updated. Here, the probability in question is 
derived from the standard deviation of the slope and length of a 
line. Lines are determined to constitute a road marking if this 
probability is within a given error range ( )  and the 
matching count is greater than a given number ( ).N  The 
relevant discriminant is as follows: 

2

road 1

1
True if ( )

False otherwi e.

,

s

N

i N
i

N
D N  




  







 S μ
    (9) 

Here, N is the matching count; 2 1
i

S   is the ith vector of 
the length and slope of the line in the group; and 2 1μ   is 
the mean of vectors 2 NS  . 

In addition, the road marking information in the probability 
map retains the same properties as in the digital map [20]. 
Therefore, in this study, a digital map–based localization 
method is used to locate the vehicle position at the parking 
stage after determining a place to park. 

VI. Parking Space Recognition  

This section describes how an AVP system identifies and 
confirms a parking space. Figure 9 shows various parking 
spaces and a simplified model for recognition purposes. 
Parking patterns are to be classified into three types — 
perpendicular, angled, and parallel. In addition, legal 
restrictions, such as the dimensions of a parking space for the 
disabled, should be considered. Therefore, the parking spaces 
are classified into five categories — perpendicular, 
perpendicular-disabled, angled, angled-disabled, and parallel. 
Moreover, it must ensure that the parking space is empty. 

As shown in Fig. 9(b), the parking space recognition model 
proposed in this paper is based on a parallelogram. Namely, the 
space consists of pairs of parallel segments, A-B and C-D. 
Segments A and B must exist, but C and D may not. Note that 
neither A nor B has to necessarily be an actual road marking, as 
shown by the green area in Fig. 9. If this is indeed the case, 
then either line segment can be determined by including the 
boundary information of obstacles in HM using a contour 
tracing technique, as described in Section III. This paper 
proposes a Bayesian classifier to recognize a parking space. 
The Bayesian classifier used in this study is defined based on 
the following classifiers using a maximum a posteriori (MAP)  



ETRI Journal, Volume 37, Number 6, December 2015 Seung-Jun Han and Jeongdan Choi   1227 
http://dx.doi.org/10.4218/etrij.15.0114.0112 

 

Fig. 9. Category of parking pattern and simplified model: (a) parking spaces can be classified roughly into three types by form —
perpendicular, angled, and parallel — and two types by users — disabled or not disabled. Note that parking space includes not
only markings but also flower beds, sidewalks, and so on (green regions), (b) proposed simple parking space model for
recognition, and (c) legal regulations of parking laws in Rep. of Korea. 
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estimate [21]: 

MAP arg max ( | ) ( ).P P



z

x z z


            (10) 

Here, T 4 1[ ]Lx d  x   is an observation vector; xL is 
the average length of segments A and B; d is the distance 
between segments A and B; θ is the slope angle of a parking 
space’s entrance (see Fig. 9(b)); z  is a set to be classified 
according to the five categories described above.  

To solve this MAP problem, the likelihood and prior should 
be known. The likelihood, ( | ),P x z  is determined by a 
probability density function taken as a multivariate Gaussian 
function. A Gaussian kernel is known to be effective in 
ellipsoidal clustering [22]. In this case, the observation vector 
has two dimensions, and the equation is as follows [21]: 

        T 11

2
1

| | ,
2

.nP z P e
  

 
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x μ Σ x
x x μ Σ

Σ

μ
    (11) 

Here, 4 1E[ ]  μ x   is a mean vector, and Σ  
4 4cov[ ] x   is the covariance matrix. To minimize 

numerical errors, we substitute (11) for (10), take the natural 
logarithm, and exclude the constant. A final decision function is 
then arrived at, as follows: 
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Here, µ and Σ can be readily gained from the learning data. In 
contrast, it is almost impossible to find prior P(z) in the general 
case. However, it is possible to infer P(z) because parking 
spaces are defined by type. Initially, P(z) sets a normalized 
vector with an equivalent probability if the nearest neighbor 
space is of the same type; then P(z) is increased by a certain 

interval (for example, 0.1). Lastly, P(z) is normalized.  
When a parking space is recognized, a final decision is 

carried out on the basis of the height information in the space. 
If there is an obstacle in the recognized parking space, then  
the space is determined to be unavailable. To increase the 
reliability of recognition, the updating of (12) and the decision 
process are repeated every frame to correct a wrong 
recognition result. 

VII. Experimental Experience 

1. Experimental Environment 

The AVP vehicle adopted in this research uses a 2.6 GHz 
Intel Xeon E5-2670 as the main controller and was remodeled 
as an unmanned unit. The test vehicle is equipped with four 1.3 
megapixel Pointgrey blackfly cameras with fisheye lenses. The 
cameras were installed in the front, rear, left, and right sides of 
the vehicle (see Fig. 2(a)). All algorithms were optimized using 
C/C++ and an Intel single instruction multiple data intrinsic 
functions. As shown in Fig. 10, to verify the results, various 
scenarios were collected into a database containing information 
on 4,024 parking spaces, stored, and synchronized with in-
vehicle network data. The vehicle ran freely up to 30 km/h in 
various types of indoor and outdoor parking spaces. The 
outdoor environment included various weather conditions 
(sunny, cloudy, rainy, and snowy). Also, it was confirmed to 
have successfully implemented AVP services and that the 
unmanned vehicle performs parking space navigation, driving, 
and parking through a combination of proposed algorithms and 
AVP control technology [3]. 

2. Performance Evaluation 

In this experiment, the IPI size used was 356 × 800; this was  
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Fig. 10. Sampled database and results: upper row is input image and lower row is recognition results overlapped by HM. Red rectangles
are occupied slots, green rectangles are vacant slots, and text in slots is slot ID, type (0: perpendicular, 1: perpendicular-
disabled, 2: angled, 3: angled-disabled, 4: parallel), and its probability. (a) Snowy day with low contrast, (b) indoor parking lot
with heavy reflection, (c) angled slots at sunset, and (d) parallel slots on rainy day, if parked vehicle covers slot markings (as in
red circle), then proposed algorithm could not recognize parking space. 

(a) (b) (c) (d) 

 
resampled by half for the building of the HM. The main 
evaluation criteria are the recall and precision [21]: 

 p p

p n p p

Recall 100, Precision 100.
t t

t f t f
   

 
  (13)  

Here, tp denotes “true positive,” fn “false negative,” and fp “false 
positive.” Table 2 shows the region separation performance of 
various disparity estimation algorithms. The segmentation 
results are compared with the manual ground truth data. For 
comparison, SNCC [23], HEBF [24], and ELAS [25] were 
selected from the local optimization algorithms. HEBF was 
originally a GPU-based algorithm, but it was implemented for 
use by a CPU. As the results show, ELAS demonstrated the 
best performance because ELAS can more effectively handle 
the non-textured areas.  

Table 3 shows the parking space marking detection 
performance. The ground truth, as shown in Fig. 7(b), was 
detected using S3R [20] and then retouched. The proposed 
technique was compared with state-of-the-art road marking 
detectors, an SLT [26], and the newest ESLT and S3R detectors  
 

[20]. As the results show, the proposed detector demonstrated 
the best performance, thanks to robust salient-line detection  
 

Table 2. Performance of static obstacle detection. 

Algorithm Road surface Low obstacles High obstacles
Execution 
time (ms) 

SNCC [23] 68.1 65.1 87.1 55.8 

HEBF [24] 78.8 77.1 90.5 63.2* 

ELAS [25] 95.8 88.5 91.2 53.24 

*CPU version, GPU version is reported to be less than 6 ms [24]. 

Table 3. Performance of parking space marking detection. 

Algorithm Recall (%) Precision (%) Execution time (ms)

SLT [26] 75.8 72.1 0.5 

ESLT [20] 85.3 78.8 0.7 

S3R [20] 90.1 82.5 4.6 

Ours 100 92.6 5.2 

 

 

Table 4. Evaluations of parking space recognition. 

Perpendicular Perpendicular-disabled Angled Angled-disabled Parallel 
 

Sunny Cloudy Rainy Snowy Sunny Cloudy Rainy Snowy Sunny Cloudy Sunny Cloudy Sunny Cloudy Rainy 
Indoor Total

TP 1,452 1,230 292 182 92 30 20 13 223 82 132 22 35 68 32 82 3,987

FN 2 0 0 0 1 0 0 0 4 2 0 0 8 10 9 1 37 

FP 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2 

Recall 
(%) 

99.86 100 100 100 98.92 100 100 100 98.23 97.61 100 100 81.40 87.18 78.05 98.80 99.08

Precision 
(%) 

100 100 100 100 100 100 100 100 100 100 100 100 97.22 100 96.97 100 99.95
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Table 5. Evaluations of execution time. 

Algorithm Step Execution time (ms) Total (ms)

Stereo rectification 3.01 

Disparity estimation 53.24 

Grid mapping 1.55 
HM building* 

Map fusion 0.89 

58.69 

Pill-box convolution 1.73 

MEF 0.54 

Radon transform 1.47 

Local maxima 
detection 

0.85 

Line feature 
extraction 

Straight-line fitting 1.11 

5.71 

Map building 0.21 

Bayesian classification 0.05 
Parking space 
recognition 

Decision process 0.16 

0.42 

N/A Other processing N/A 3–4 

*HM building is running in background thread. 

 
and probability-based road-marking selection technology. 

Table 4 shows the results of the parking space recognition 
performance in a variety of environments. Of the 4,024 parking 
spaces used in this study, recognition failure occurred in 37 
cases and incorrect recognition in only 2. As shown in     
Fig. 10(d), recognition failure occurred only when a parked 
vehicle covered the space markings; however, there was no 
recognition failure if the space was empty. The proposed 
technology is not affected by adverse environmental conditions, 
as shown in the results. Therefore, these algorithms are 
considered to be appropriate to be used as a recognition 
technique for AVP systems. 

Lastly, the evaluation results of the execution time in each 
step are shown in Table 5. Each execution time was a result of 
a single core implementation. All algorithms are guaranteed 
real-time execution except the HM building process, which is 
run on a background thread. In actual vehicle experiments, it 
was confirmed that the system successfully operates up to   
30 f/s capture rate and 50 km/h velocity. 

VIII. Conclusion 

As the competition in autonomous vehicle technology 
development becomes more and more fierce, autonomous 
valet parking (AVP) technology is expected to be commonly 
used in the near future. This study proposes an efficient parking 
space recognition technology that can be applied directly to an 
AVP system. In particular, this paper proposes new algorithms 
consisting of space analysis, road marking detection, and 

parking space recognition that combines space and road 
marking information. Also, the algorithm performance and 
usability were evaluated in various ways. More research is 
needed to develop a symbol recognition technology for the 
disabled parking space and a map optimization technology to 
improve the accuracy of both the SPM and HM maps. Because 
the proposed algorithms are the foundation techniques for 
autonomous vehicles, the proposed techniques can be applied 
to various other areas. 
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