• Title/Summary/Keyword: space coordinate system

Search Result 313, Processing Time 0.032 seconds

Development of a Reduction Algorithm of GEO Satellite Optical Observation Data for Optical Wide Field Patrol (OWL)

  • Park, Sun-youp;Choi, Jin;Jo, Jung Hyun;Son, Ju Young;Park, Yung-Sik;Yim, Hong-Suh;Moon, Hong-Kyu;Bae, Young-Ho;Choi, Young-Jun;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.201-207
    • /
    • 2015
  • An algorithm to automatically extract coordinate and time information from optical observation data of geostationary orbit satellites (GEO satellites) or geosynchronous orbit satellites (GOS satellites) is developed. The optical wide-field patrol system is capable of automatic observation using a pre-arranged schedule. Therefore, if this type of automatic analysis algorithm is available, daily unmanned monitoring of GEO satellites can be possible. For data acquisition for development, the COMS1 satellite was observed with 1-s exposure time and 1-m interval. The images were grouped and processed in terms of "action", and each action was composed of six or nine successive images. First, a reference image with the best quality in one action was selected. Next, the rest of the images in the action were geometrically transformed to fit in the horizontal coordinate system (expressed in azimuthal angle and elevation) of the reference image. Then, these images were median-combined to retain only the possible non-moving GEO candidates. By reverting the coordinate transformation of the positions of these GEO satellite candidates, the final coordinates could be calculated.

Compressible Parabolized Stability Equation in Curvilinear Coordinate System and integration

  • Gao, Bing;Park, S.O.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.155-174
    • /
    • 2006
  • Parabolized stability equations for compressible flows in general curvilinear coordinate system are derived to deal with a broad range of transition prediction problems on complex geometry. A highly accurate finite difference PSE code has been developed using an implicit marching procedure. Compressible and incompressible flat plate flow stability under two-dimensional and three¬dimensional disturbances has been investigated to test the present code. Results of the present computation are found to be in good agreement with the multiple scale analysis and DNS data. Stability calculation results by the present PSE code for compressible boundary layer at Mach numbers ranging from 0.02 to 1.5 are also presented and are again seen to be as accurate as the spectral method.

A Study on the Plan Photogrammetry for Clothing Design (피복구성학적 인체계측방법에 관한 연구 - 평면사진계측방법을 중심으로 -)

  • 박찬미;서미아
    • The Research Journal of the Costume Culture
    • /
    • v.5 no.1
    • /
    • pp.151-164
    • /
    • 1997
  • This study pursues the problems of plan photogrammetry which is widely used in somatotyping at present, and find out a method which can improve accuracy of measurement on the basis of principles and mechanisms of photography-the basic foundation of the photographic analysis methods. As a result, this study proposes a new method which is based on the reference point method and perspective coordinate system. And the test measurement was operated to compare the measurement accuracy of the proposed method and the method based on reference grid screen method and perpendicular coordinate system which is commonly used at present. The result of this test measurement showed that the proposed method has higher accuracy. Two reasons can be pointed out for the improvement of measuring accuracy. The first reason is that the proposed perspective coordinate system reduces the perspective distortion of photography. And second reason is that measuring points can be closely placed to the scale and coordinate reference plan of measurement by the proposed reference point method which make possible to place measuring object (or person) at the center of scale and coordinate reference plan by utilizing reference points of measurement in the three dimensional space not on screen.

  • PDF

Inverse Dynamic Analysis for Various Drivings in Kinematic Systems (기구학적 시스템에 있어서 구동방법에 따른 역동역학 해석)

  • Lee, Byung Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.9
    • /
    • pp.869-876
    • /
    • 2017
  • Analysis of actuating forces and joint reaction forces are essential to determine the capacity of actuators, to control the mechanical system and to design its components. This paper presents an algorithm that calculates actuating forces(or torques), depending on the various types of driving constraints, in order to produce a given system motion in the joint coordinate space. The joint coordinates are used as the generalized coordinates of a kinematic system. System equations of motion and constraint acceleration equations are transformed from the Cartesian coordinate space to the joint coordinate space using the velocity transformation method. A numerical example is carried out to verify the algorithm proposed.

Alignment of Inertial Navigation Sensor and Aircraft Fuselage Using an optical 3D Coordinate Measuring Device (광학식 3차원 좌표측정장치를 이용한 관성항법센서와 기체의 정렬기법)

  • Kim, Jeong-ho;Lee, Dae-woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.41-48
    • /
    • 2019
  • This paper deals with a method of aligning an aircraft fuselage and an inertial navigation sensor using three-dimensional coordinates obtained by an optical method. In order to verify the feasibility, we introduce the method to accurately align the coordinate system of the inertial navigation sensor and the aircraft reference coordinate system. It is verified through simulation that reflects the error level of the measuring device. In addition, optimization method based alignment algorithm is proposed for connection between optical sensor and inertial navigation sensor.

Design of nonlinear optimal regulators using lower dimensional riemannian geometric models

  • Izawa, Yoshiaki;Hakomori, Kyojiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.628-633
    • /
    • 1994
  • A new Riemannian geometric model for the controlled plant is proposed by imbedding the control vector space in the state space, so as to reduce the dimension of the model. This geometric model is derived by replacing the orthogonal straight coordinate axes on the state space of a linear system with the curvilinear coordinate axes. Therefore the integral manifold of the geometric model becomes homeomorphic to that of fictitious linear system. For the lower dimensional Riemannian geometric model, a nonlinear optimal regulator with a quadratic form performance index which contains the Riemannian metric tensor is designed. Since the integral manifold of the nonlinear regulator is determined to be homeomorphic to that of the linear regulator, it is expected that the basic properties of the linear regulator such as feedback structure, stability and robustness are to be reflected in those of the nonlinear regulator. To apply the above regulator theory to a real nonlinear plant, it is discussed how to distort the curvilinear coordinate axes on which a nonlinear plant behaves as a linear system. Consequently, a partial differential equation with respect to the homeomorphism is derived. Finally, the computational algorithm for the nonlinear optimal regulator is discussed and a numerical example is shown.

  • PDF

On the Modeling of Dynamic Systems

  • Suk, Jinyoung;Kim, Youdan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.78-92
    • /
    • 2001
  • In this paper, several dynamic systems are modeled using the time domain finite element method. Galerkins' Weak Principle is used to model the general second-order mechanical system, and is applied to a simple pendulum dynamics. Problems caused by approximating the final momentum are also investigated. Extending the research, some dynamic analysis methods are suggested for the hybrid coordinate systems that have both slew and flexible modes. The proposed methods are based on both Extended Hamilton's Principle and Galerkin's Weak Principle. The matrix wave equation is propagated in space domain, satisfying the geometric/natural boundary conditions. As a result, the flexible motion can be obtained compatible with the applied control input. Numerical example is shown to demonstrate the effectiveness of the proposed modeling methods for the hybrid coordinate systems.

  • PDF

Qualification Test of ROCSAT -2 Image Processing System

  • Liu, Cynthia;Lin, Po-Ting;Chen, Hong-Yu;Lee, Yong-Yao;Kao, Ricky;Wu, An-Ming
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1197-1199
    • /
    • 2003
  • ROCSAT-2 mission is to daily image over Taiwan and the surrounding area for disaster monitoring, land use, and ocean surveillance during the 5-year mission lifetime. The satellite will be launched in December 2003 into its mission orbit, which is selected as a 14 rev/day repetitive Sun-synchronous orbit descending over (120 deg E, 24 deg N) and 9:45 a.m. over the equator with the minimum eccentricity. National Space Program Office (NSPO) is developing a ROCSAT-2 Image Processing System (IPS), which aims to provide real-time high quality image data for ROCSAT-2 mission. A simulated ROCSAT-2 image, based on Level 1B QuickBird Data, is generated for IPS verification. The test image is comprised of one panchromatic data and four multispectral data. The qualification process consists of four procedures: (a) QuickBird image processing, (b) generation of simulated ROCSAT-2 image in Generic Raw Level Data (GERALD) format, (c) ROCSAT-2 image processing, and (d) geometric error analysis. QuickBird standard photogrammetric parameters of a camera that models the imaging and optical system is used to calculate the latitude and longitude of each line and sample. The backward (inverse model) approach is applied to find the relationship between geodetic coordinate system (latitude, longitude) and image coordinate system (line, sample). The bilinear resampling method is used to generate the test image. Ground control points are used to evaluate the error for data processing. The data processing contains various coordinate system transformations using attitude quaternion and orbit elements. Through the qualification test process, it is verified that the IPS is capable of handling high-resolution image data with the accuracy of Level 2 processing within 500 m.

  • PDF

A Study on the Dynamic Analysis of Multibody System by the Relative Joint Coordinate Method (상대이음좌표방법을 이용한 다물체 시스템의 동역학적 해석에 관한 연구)

  • 이동찬;배대성;한창수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1974-1984
    • /
    • 1994
  • This paper presents a relative coordinate formulation for constrained mechanical systems. Relative coordinates are defined along degrees of freedom of a joint. Graph theoretic analyses are performed to identify topological paths in mechanical systems. Cut constraints are generated to handle closed loop systems. Equations of motion are derived in the Cartesian space and transformed to the joint space. Relative generalized coordinates are corrected to satisfy the cut constraints by a parametrizatiom method.

Multi-beam Antenna Analysis

  • Lee, Jeom-Hun;Oh, Seung-Hyeub
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.2
    • /
    • pp.71-76
    • /
    • 2004
  • This paper describes the antenna analysis of the multi-beam for communicationsatellite. The design core parameters of the antenna system are optimal antennadiameter, feed horn type and hom size, F/D, and the coordinate of offset horns. Thepaper deals with the method to determine design core parameters of optimal antennadiameter, feed horn type and horn size. F/D, and the coordinate of offset horns, andthe performances of design result.