Browse > Article
http://dx.doi.org/10.5140/JASS.2015.32.3.201

Development of a Reduction Algorithm of GEO Satellite Optical Observation Data for Optical Wide Field Patrol (OWL)  

Park, Sun-youp (Space Situational Awareness Center, Korea Astronomy and Space Science Institute)
Choi, Jin (Space Situational Awareness Center, Korea Astronomy and Space Science Institute)
Jo, Jung Hyun (Space Situational Awareness Center, Korea Astronomy and Space Science Institute)
Son, Ju Young (Space Situational Awareness Center, Korea Astronomy and Space Science Institute)
Park, Yung-Sik (Space Situational Awareness Center, Korea Astronomy and Space Science Institute)
Yim, Hong-Suh (Space Situational Awareness Center, Korea Astronomy and Space Science Institute)
Moon, Hong-Kyu (Space Situational Awareness Center, Korea Astronomy and Space Science Institute)
Bae, Young-Ho (Space Situational Awareness Center, Korea Astronomy and Space Science Institute)
Choi, Young-Jun (Space Situational Awareness Center, Korea Astronomy and Space Science Institute)
Park, Jang-Hyun (Space Situational Awareness Center, Korea Astronomy and Space Science Institute)
Publication Information
Journal of Astronomy and Space Sciences / v.32, no.3, 2015 , pp. 201-207 More about this Journal
Abstract
An algorithm to automatically extract coordinate and time information from optical observation data of geostationary orbit satellites (GEO satellites) or geosynchronous orbit satellites (GOS satellites) is developed. The optical wide-field patrol system is capable of automatic observation using a pre-arranged schedule. Therefore, if this type of automatic analysis algorithm is available, daily unmanned monitoring of GEO satellites can be possible. For data acquisition for development, the COMS1 satellite was observed with 1-s exposure time and 1-m interval. The images were grouped and processed in terms of "action", and each action was composed of six or nine successive images. First, a reference image with the best quality in one action was selected. Next, the rest of the images in the action were geometrically transformed to fit in the horizontal coordinate system (expressed in azimuthal angle and elevation) of the reference image. Then, these images were median-combined to retain only the possible non-moving GEO candidates. By reverting the coordinate transformation of the positions of these GEO satellite candidates, the final coordinates could be calculated.
Keywords
GEO satellite; data reduction; algorithm; optical; wide field;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Bertin E, Arnouts S, SExtractor: Software for source extraction, Astron. Astrophys. Supl. 117, 393-404 (1996). http://dx.doi.org/10.1051/aas:1996164   DOI
2 Bertin E, SExtractor v2.5 User's manual, (Institut d'Astrophysique & Observatoire de Paris, France, 2006).
3 Calabretta MR, Greisen EW, Representations of celestial coordinates in FITS, Astron. Astrophys. 1077-1122 (2002). http://dx.doi.org/10.1051/0004-6361:20021327   DOI
4 Choi J, Kim BY, Yim HS, Chang HY, Yoon JN, et al., Orbit determination using angle-only data for MEO & GEO satellite and obsolete, J. Astron. Space Sci. 26, 111-126 (2009). http://dx.doi.org/10.5140/JASS.2009.26.1.111   DOI
5 Choi J, Choi YJ, Yim HS, Jo JH, Han W, Two-Site optical observation and initial orbit determination for geostationary earth orbit satellites, J. Astron. Space Sci. 27, 337-343 (2010). http://dx.doi.org/10.5140/JASS.2010.27.4.337   DOI
6 Choi J, Jo JH, Choi YJ, Cho GI, Kim JH, et al., A study on the strategies of the positioning of a satellite on observed images by the astronomical telescope and the observation and initial orbit determination of unidentified space objects, J. Astron. Space Sci. 28, 333-344 (2011). http://dx.doi.org/10.5140/JASS.2011.28.4.333   DOI
7 Greisen EW, Calabretta MR, Representations of world coordinates in FITS, Astron. Astrophys. 395, 1061-1076 (2002). http://dx.doi.org/10.1051/0004-6361:20021326   DOI
8 Groth EJ, A pattern-matching algorithm for two-dimensional coordinate lists, Astron. J. 91, 1244-1248 (1986). http://dx.doi.org/10.1086/114099   DOI
9 Jenkner H, Lasker BM, Sturch CR, McLean BJ, Shara MM, et al., The Guide Star Catalog. III. Production, database organization, and population statistics, Astron. J. 99, 2082-2254 (1990). http://dx.doi.org/10.1086/115485   DOI
10 Lasker BM, Sturch CR, McLean BJ, Russel JL, Helmut J, et al., The Guide Star Catalog. I. Astronomical foundations and image processing, Astron. J. 99, 2019-2178 (1990). http://dx.doi.org/10.1086/115483   DOI
11 Lee WK, Lim HC, Park PH, Youn JH, Yim HS, et al., Orbit determination of GPS and KOREASAT 2 satellite using angle-only data and requirements for optical tracking system, J. Astron. Space Sci. 21, 221-232 (2004). http://dx.doi.org/10.5140/JASS.2004.21.3.221   DOI
12 Montojo FJ, Moratalla TL, Abad C, Astrometric positioning and orbit determination of geostationary satellites, Adv. Space Res. 47, 1043-1053 (2011). http://dx.doi.org/10.1016/j.asr.2010.11.025   DOI
13 Nikolayev S, Phillion D, Simms L, Pertica A, Oliver S, et al., Analysis of Galaxy 15 satellite images from a smallaperture telescope, The Advanced Maui Optical and Space Surveillance Technologies Conference, Wailea, Maui, Hawaii, 13-16 Sep 2011.
14 Park S, Keum KH, Lee SW, Jin H, Park YS, et al., Development of a data reduction algorithm for Optical Wide Field Patrol, J. Astron. Space Sci. 30, 193-206 (2013). http://dx.doi.org/10.5140/JASS.2013.30.3.193   DOI
15 Russel JL, Lasker BM, McLean BJ, Sturch CR, Helmut J, et al., The Guide Star Catalog. II. Photometric and astrometric models and solutions, Astron. J., 99, 2059-2081 (1990). http://dx.doi.org/10.1086/115484   DOI
16 Valdes F, The Interactive Data Reduction and Analysis Facility (IRAF), Bull. Am. Astron. Soc. 16, 497 (1984).