• Title/Summary/Keyword: soybean fermentation

Search Result 635, Processing Time 0.029 seconds

Quality Characteristic of Wheat Doenjang according to Mixing Ratio of Meju (메주의 배합비를 달리한 밀된장의 품질특성)

  • Lee, Gyeong-Ran;Ko, Yu-Jin;Kim, Eun-Ja;Kim, Il-Hun;Shim, Ki-Hwan;Kim, Young-Gi;Ryu, Chung-Ho
    • Food Science and Preservation
    • /
    • v.20 no.2
    • /
    • pp.191-198
    • /
    • 2013
  • In this study, wheat doenjang was manufactured using Korean wheat meju and soybean meju, and its quality were investigated according to mixing ratio of meju. The general characteristics such as moisture contents, pH and salinity of wheat doenjang, which is fermented and aged at $25^{\circ}C$ for 70 days, were slightly decreased time dependently as similar pattern. The pH of wheat doenjang ranged from 4.95 to 5.11% and generally decreased with aging. The moisture contents was 54.5~57.5%, and there was no significant differences in the aging period. Also, there was no significant changes in the salt contents. The amino-type nitrogen contents were 376.27~600.91 mg% at day 70 of the aging period, and showed 3 fold change compared to the initial contents. The reducing sugar contents showed significant difference between the samples, and repeated fluctuation in the aging period. Wheat meju sample A, which contains 50% of soybean meju, showed the highest antioxidation ability. In addition, wheat meju sample A showed the highest score in the sensory evaluation of the colour, taste, flavor, and overall acceptability. Therefore, wheat doenjang manufacturing at a 1:1 of mixing ratio will lead to desirable quality of wheat doenjang.

Effects of Supplementing Whole Oilseeds to Alcohol-Fermented Feedstuff Based on Rye Hay on in vitro Rumen Fermentation Characteristics (호밀 건초 급여하의 By-pass 전지종실을 첨가한 알코올 발효사료의 in vitro 발효특성)

  • Shin, Jong-Seo;Park, Byoung-Ki;Oh, Jin-Seok;Kim, Byong-Wan;Hong, Byong-Ju
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.27 no.3
    • /
    • pp.219-228
    • /
    • 2007
  • This study was conducted to determine the effects of supplementing whole oilseeds to the alcohol fermented feedstuff based on rye hay on in vitro rumen fermentation of Hanwoo steers. Experiments were arranged with four treatment groups, T1 (without any oilseeds), T2 (supplemented with cottonseed), T3 (supplemented with linseed) and T4 (supplemented with soybean). The pH decreased at 6 and 12h in vitro incubation in T2 and at 3 and 12h in vitro incubation in T4 (p<0.05). However, no decrease of the pH was observed at any in vitro incubation in T3 (p>0.05). Ammonia concentration increased at 6h in vitro incubation in T2 and at 6 and 9 h in vitro incubation in T4 (p<0.05). Concentrations of acetate, butyrate and propionate increased at 3, 9 and 12h in vitro incubation in T4 and at 3h in vitro incubation in T3 (p<0.05). This study indicates that the supplementation of whole oilseeds to alcohol fermented feedstuff based on rye kay can improve the in vitro rumen fermentation.

Characteristics of Chungkookjang that Enhance the Flavor and GABA Content in a Mixed Culture of Bacillus subtilis MC31 and Lactobacillus sakei 383 (Bacillus subtilis MC31와 Lactobacillus sakei 383의 혼합배양으로 향상된 풍미와 GABA 함량을 지닌 청국장의 품질 특성)

  • Lee, Ga-Young;Kim, Su-In;Jung, Min-Gi;Seong, Jong-Hwan;Lee, Young-Guen;Kim, Han-Soo;Chung, Hun-Sik;Lee, Byoung-Won;Kim, Dong-Seob
    • Journal of Life Science
    • /
    • v.24 no.10
    • /
    • pp.1102-1109
    • /
    • 2014
  • Chungkookjang has several functional properties, such as fibrinolytic activity, anticancer effects, and antioxidant effects. However, children do not like Chungkookjang because of its foul odor. A mixed culture of Bacillus subtilis MC31 and Lactobacillus sakei 383 was used to improve the production of GABA in Chungkookjang and its flavor. Most of the foul odor of Chungkookjang was removed. The slime content and viscosity of Chungkookjang fermented in the mixed culture were similar to those of commercial Chungkookjang when B. subtilis MC31 and Lactobacillus sakei 383 were inoculated in a 1:1 ratio. The maximum GABA content was obtained when Chungkookjang was fermented with B. subtilis MC31 and L. sakei 383, which was fermented at $37^{\circ}C$ for 72 hr. During the period of fermentation, the viable cell number of B. subtilis MC31 reached a peak (log 9.13 CFU/g) at six days, and L. sakei 383 reached a peak (log 6.78 CFU/g) at two days. The moisture, crude ash, crude protein, crude fat, and crude fiber contents were 61.71%, 2.05%, 17.54%, 8.36%, and 1.95%, respectively. The amino-type nitrogen content of Chungkookjang fermented by B. subtilis MC31 and L. sakei 383 was less than Chungkookjang fermented by B. subtilis MC31 alone. The ammonia-type nitrogen and reducing sugar content of the Chungkookjang fermented by B. subtilis MC31 and L. sakei 383 were higher than that of steamed soybean. The glutamic acid and GABA content detected with an amino acid analyzer were 1.40 mg/g and 0.47 mg/g, respectively. These results suggest that fermentation with B. subtilis MC31 and L. sakei 383 in a 1:1 ratio removes more of the foul odor and increases the GABA content compared with single fermentation.

Characteristics and functional analysis of Bacillus strains from the fermented soybean products, Cheonggukjang (전통 발효 청국장으로부터 분리한 Bacillus 균주들의 특성 및 기능 분석)

  • Moon, Ji-Young;Kwon, Soon-Wo;Hong, Seung-Beom;Seok, Soon-Ja;Kim, Jeong-Seon;Kim, Soo-Jin
    • Korean Journal of Microbiology
    • /
    • v.51 no.3
    • /
    • pp.300-307
    • /
    • 2015
  • For selecting Bacillus strains producing high-quality Cheonggukjang, 8 strains were isolated from the different Cheonggukjang samples. Seven of them exhibited the highest 16S rRNA gene sequence similarity value of over 99.9% to Bacillus subtilis subsp. subtilis and one of them showed the similarity to B. licheniformis. All the strains showed positive activities for amylase, cellulase, protease and lipase, and 6 strains are positive for fibrinolytic activity. To confirm the safety of the strains isolated from the samples of Cheonggukjang which are manufactured by traditional method, strains were analyzed for the presence of seven toxin genes of Bacillus cereus and results were found negative. And 7 strains did not produce at all or merely produce both histamine and tyramine, the representative biogenic amines. Biogenic amine degradation analysis by HPLC revealed that, most of them exhibited tyramine degradation activity. For Cheonggukjang fermented by artificial inoculation of selected strains, fermentation property, sensory test, volatile basic nitrogen production and metabolic profiles by $^1H-NMR$ were tested. Seven strains were confirmed to make high-quality Cheonggukjang.

Ruminal Protein Degradation Characteristics of Cell Mass from Lysine Production

  • Seo, S.;Kim, H.J.;Lee, S.Y.;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.3
    • /
    • pp.364-370
    • /
    • 2008
  • Chemical analysis and in vitro studies were conducted to investigate the nutritive value for ruminants of cell mass from lysine production (CMLP) which is a by-product of the lysine manufacturing process. Proximate analysis, protein fractionation, and in vitro protein degradation using protease from Streptomyces griseus and strained ruminal fluid were carried out to estimate ruminal protein degradability of CMLP with two reference feedstuffs-soybean meal (SBM) and fish meal (FM). Amino acid composition and pepsin-HCl degradability were also determined to evaluate postruminal availability. CMLP contained 67.8% crude protein with a major portion being soluble form (45.4% CP) which was composed of mainly ammonium nitrogen (81.8% soluble CP). The amount of nucleic acids was low (1.15% DM). The total amount of amino acids contained in CMLP was 40.60% DM, which was lower than SBM (47.69% DM) or FM (54.08% DM). CMLP was composed of mainly fraction A and fraction B2, while the protein fraction in SBM was mostly B2 and FM contained high proportions of B2 and B3 fractions. The proportion of B3 fraction, slowly degradable protein, in CP was the highest in fish meal (23.34%), followed by CMLP (7.68%) and SBM (1.46%). CMLP was degraded up to 51.40% at 18 h of incubation with Streptomyces protease, which was low compared to FM (55.23%) and SBM (83.01%). This may be due to the insoluble portion of CMLP protein being hardly degradable by the protease. The in vitro fermentation by strained ruminal fluid showed that the amount of soluble fraction was larger in CMLP (40.6%) than in SBM (17.8%). However, because the degradation rate constant of the potentially degradable fraction of CMLP (2.0%/h) was lower than that of SBM (5.8%/h), the effective ruminal protein degradability of CMLP (46.95%) was slightly lower than SBM (53.77%). Unavailable fraction in the rumen was higher in CMLP (34.0%) compared to SBM (8.8%). In vitro CP degradability of CMLP by pepsin was 80.37%, which was lower than SBM (94.42%) and FM (89.04%). The evaluation of protein degradability using different approaches indicated that soluble protein in CMLP may supply a large amount of ammonia in the rumen while insoluble protein can be by-passed from microbial attacks due to its low degradability. The results from this study suggest that CMLP can be used as a protein supplement to ruminants for supplying both non-protein nitrogen to rumen microbes and rumen undegradable protein to the host animal.

Immuno-Activities of Extracts of Tofu Fermented with Pleurotus eryngii Mycelia (큰느타리버섯 균사체로 제조한 발효두부 추출물의 면역 활성)

  • Lee, Sang-Won;Kang, Jong-Woo;Kim, Jae-Yong;Park, Kyung-Wuk;Park, Seok-Kyu;Joo, Ok-Soo;Yee, Sung-Tae;Seo, Kwon-Il
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • In order to improve the functional benefits and storage properties of soybean tofu, fermented tofu was developed using Pleurotus eryngii mycelia. The immune activities of water and methanol extracts of the tofu were investigated. The optimal medium for the growth of Pleurotus eryngii mycelia was PD broth medium and the optimal fermentation period for the tofu was 7 days. The water and methanol extracts of the fermented tofu induced the proliferation of spleen cells at above $0.01 {\mu}g/mL$. The water extract increased IL-2, IFN-$\gamma$ production, while the methanol extract increased IFN-$\gamma$ synthesis. The water and methanol extracts of the fermented tofu induced the NO production in RAW264.7 macrophage cells at above $1 {\mu}g/mL$ and above $10 {\mu}g/mL$ concentration, respectively. The extracts also significantly increased the production of IL-6, TNF-$\alpha$, IL-1$\beta$ and GM-CSF in the cells. These results suggest that the tofu fermented with Pleurotus eryngii mycelia could be developed as a functional tofu.

Changes of Aflatoxins During the Ripening of Korean Soy Paste and Soy Sauce and the Characteristics of the Changes-Part 1. Effect of Bacillus subtilis on the Growth and Aflatoxin Production of Aspergillu parasiticus (한국산 전통 간장과 된장의 숙성중 aflatoxin의 변화와 그 특징-제1보. 경쟁 미생물(Bacillus subtilis)이 Aspergillu parasiticus의 성장과 aflatoxin 생성에 미치는 영향)

  • 김종규;노우섭
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.3
    • /
    • pp.313-317
    • /
    • 1998
  • This study was perfonned to investigate the possible effect of Bacillus subtilis which is the predominant species of bacteria in Korean soy sauce, soy paste, and Meju (soybean cake) on the growth and aflatoxin production of Aspergillus parasiticus ATCC 15517. The microorganisms were grown in a modified APT broth and incubated at $30^{\circ}C$ for 12 days. Aflatoxins were determined using high performance liquid chromatography (HPLC). A remarkable inhibition of the growth of Aspergillus parasiticus was observed during the incubation period when in the presence of B. subtilis (mixed culture). Dry mycelial weight in the mixed culture was significantly reduced by 85.3% in comparison to the control at the end of the incubation period (p<0.01). Lower levels of aflatoxins were found in the mixed culture than in the monoculture. At the end of the incubation period aflatoxin production was significantly inhibited by more than 50% (p<0.05). These results indicate that B. subtilis mainly inhibites the growth and aflatoxin production of toxigenic Aspergillus in Meju, soy sauce and soy paste. Although its effect on aflatoxin production was less pronounced, we could expect more inhibition by another bacteria related with fermentation in Meju.

  • PDF

The Use of the Pathogen-specific Bacteriophage BCP8-2 to Develop a Rice Straw-derived Bacillus cereus-free Starter Culture (단일 박테리오파지를 이용한 볏짚 유래 Bacillus cereus free 스타터 컬쳐의 개발)

  • Bandara, Nadeeka;Chung, Seo-Jin;Jeong, Do-Youn;Kim, Kwang-Pyo
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.115-120
    • /
    • 2014
  • The purpose of this study was to develop a rice straw-derived Bacillus cereus (B. cereus)-free starter culture for traditional soybean fermented products using a B. cereus-specific bacteriophage, BCP8-2. To determine the optimal medium that supports the growth of rice straw-derived microorganisms and BCP8-2 activity, 5 different culture media were tested. The 5% ground bean (GB) medium was selected for further study. No B. cereus was detected in the BCP8-2-treated rice straw in GB medium, whereas B. cereus at a level of $10^7$ CFU/mL was recovered in the no-phage control. The total bacterial count reached approximately $10^9$ CFU/mL regardless of phage addition. When the 16S rRNA sequence-based microbial community was monitored using denaturing gradient gel electrophoresis (DGGE) and pyrosequencing, a similar microbial community was observed in the phage-treated and control samples. In conclusion, we demonstrate that phage can be used to prepare a rice straw-derived B. cereus-free starter culture with minimal effect on natural microflora.

Development of a Biofungicide Using a Mycoparasitic Fungus Simplicillium lamellicola BCP and Its Control Efficacy against Gray Mold Diseases of Tomato and Ginseng

  • Shin, Teak Soo;Yu, Nan Hee;Lee, Jaeho;Choi, Gyung Ja;Kim, Jin-Cheol;Shin, Chul Soo
    • The Plant Pathology Journal
    • /
    • v.33 no.3
    • /
    • pp.337-344
    • /
    • 2017
  • To develop a commercial product using the mycoparasitic fungus Simplicillium lamellicola BCP, the scale-up of conidia production from a 5-l jar to a 5,000-l pilot bioreactor, optimization of the freeze-drying of the fermentation broth, and preparation of a wettable powder-type formulation were performed. Then, its disease control efficacy was evaluated against gray mold diseases of tomato and ginseng plants in field conditions. The final conidial yields of S. lamellicola BCP were $3.3{\times}10^9conidia/ml$ for a 5-l jar, $3.5{\times}10^9conidia/ml$ for a 500-l pilot vessel, and $3.1{\times}10^9conidia/ml$ for a 5,000-l pilot bioreactor. The conidial yield in the 5,000-l pilot bioreactor was comparable to that in the 5-l jar and 500-l pilot vessel. On the other hand, the highest conidial viability of 86% was obtained by the freeze-drying method using an additive combination of lactose, trehalose, soybean meal, and glycerin. Using the freeze-dried sample, a wettable powder-type formulation (active ingredient 10%; BCP-WP10) was prepared. A conidial viability of more than 50% was maintained in BCP-WP10 until 22 weeks for storage at $40^{\circ}C$. BCP-WP10 effectively suppressed the development of gray mold disease on tomato with control efficacies of 64.7% and 82.6% at 500- and 250-fold dilutions, respectively. It also reduced the incidence of gray mold on ginseng by 65.6% and 81.3% at 500- and 250-fold dilutions, respectively. The results indicated that the new microbial fungicide BCP-WP10 can be used widely to control gray mold diseases of various crops including tomato and ginseng.

Effects of Supplements with Different Protein Contents on Nutritional Performance of Grazing Cattle During the Rainy Season

  • Figueiras, J.F.;Detmann, E.;Franco, M.O.;Batista, E.D.;Reis, W.L.S.;Paulino, M.F.;Valadares Filho, S.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.12
    • /
    • pp.1710-1718
    • /
    • 2016
  • The objective of this study was to evaluate the effects of supplements with different crude protein (CP) contents on grazing cattle intake, digestibility, ruminal fermentation pattern, and nitrogen (N) metabolism characteristics during the rainy season. Five ruminal and abomasal cannulated Holstein${\times}$Zebu steers (296 kg body weight, BW) were used in a $5{\times}5$ Latin square design. The animals grazed five signal grass paddocks (0.34 ha). The five treatments evaluated were: Control (no supplement) and 1.0 g of supplement/kg BW with 0, 330, 660, and 1,000 g of CP/kg as-fed. The supplement was composed of starch, soybean meal, urea, and ammonium sulphate. There was a positive linear effect ($p{\leq}0.033$) of the CP content in the supplements on the organic matter (OM), CP, and digested OM intakes. The provision of supplements did not increase ($p{\geq}0.158$), on average, total and ruminal digestibilities of OM and CP. However, the increase in CP content in the supplements caused a positive linear effect ($p{\leq}0.018$) on ruminal digestibilities of OM and CP. Additionally, a quadratic effect of the CP contents of the supplements were observed (p = 0.041) for the ruminal digestibility of neutral detergent fiber corrected for ash and protein, with the highest estimate obtained with the CP content of 670 g/kg. The supply of supplements increased (p<0.001) the ruminal ammonia N concentration, which also changed linearly and positively (p<0.001) according to increase in CP content in the supplements. The apparent N balance and relative N balance (g/g N intake) were not, on average, changed ($p{\geq}0.164$) by the supplements supply. However, both showed a tendency of a linear increase ($p{\leq}0.099$) with increasing supplement CP content. The supplements increased (p = 0.007) microbial N production in the rumen, which also changed linearly and positively (p = 0.016) with increasing supplement CP content. In conclusion, protein supplementation in grazing cattle during the rainy season, while stimulating voluntary forage intake, results in higher efficiency of N utilization when compared to energy supplementation. This is a possible response to increased microbial protein synthesis in the rumen and improved N status in the animal body.