Browse > Article
http://dx.doi.org/10.5713/ajas.2008.70552

Ruminal Protein Degradation Characteristics of Cell Mass from Lysine Production  

Seo, S. (206 ERML, 1201 W. Gregory Dr. University of Illinois at Urbana-Champaign)
Kim, H.J. (Research Institute for Agriculture and Life Sciences, Seoul National University)
Lee, S.Y. (School of Agricultural Biotechnology, Seoul National University)
Ha, Jong K. (School of Agricultural Biotechnology, Seoul National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.21, no.3, 2008 , pp. 364-370 More about this Journal
Abstract
Chemical analysis and in vitro studies were conducted to investigate the nutritive value for ruminants of cell mass from lysine production (CMLP) which is a by-product of the lysine manufacturing process. Proximate analysis, protein fractionation, and in vitro protein degradation using protease from Streptomyces griseus and strained ruminal fluid were carried out to estimate ruminal protein degradability of CMLP with two reference feedstuffs-soybean meal (SBM) and fish meal (FM). Amino acid composition and pepsin-HCl degradability were also determined to evaluate postruminal availability. CMLP contained 67.8% crude protein with a major portion being soluble form (45.4% CP) which was composed of mainly ammonium nitrogen (81.8% soluble CP). The amount of nucleic acids was low (1.15% DM). The total amount of amino acids contained in CMLP was 40.60% DM, which was lower than SBM (47.69% DM) or FM (54.08% DM). CMLP was composed of mainly fraction A and fraction B2, while the protein fraction in SBM was mostly B2 and FM contained high proportions of B2 and B3 fractions. The proportion of B3 fraction, slowly degradable protein, in CP was the highest in fish meal (23.34%), followed by CMLP (7.68%) and SBM (1.46%). CMLP was degraded up to 51.40% at 18 h of incubation with Streptomyces protease, which was low compared to FM (55.23%) and SBM (83.01%). This may be due to the insoluble portion of CMLP protein being hardly degradable by the protease. The in vitro fermentation by strained ruminal fluid showed that the amount of soluble fraction was larger in CMLP (40.6%) than in SBM (17.8%). However, because the degradation rate constant of the potentially degradable fraction of CMLP (2.0%/h) was lower than that of SBM (5.8%/h), the effective ruminal protein degradability of CMLP (46.95%) was slightly lower than SBM (53.77%). Unavailable fraction in the rumen was higher in CMLP (34.0%) compared to SBM (8.8%). In vitro CP degradability of CMLP by pepsin was 80.37%, which was lower than SBM (94.42%) and FM (89.04%). The evaluation of protein degradability using different approaches indicated that soluble protein in CMLP may supply a large amount of ammonia in the rumen while insoluble protein can be by-passed from microbial attacks due to its low degradability. The results from this study suggest that CMLP can be used as a protein supplement to ruminants for supplying both non-protein nitrogen to rumen microbes and rumen undegradable protein to the host animal.
Keywords
Cell Mass from Lysine Production; Ruminal Protein Degradability; Protein Fraction;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Van Soest, P. J. 1994. Nutritional ecology of the ruminant. 2nd edn. Comstock Pub., Ithaca, NY, USA.
2 Sniffen, C. J., J. D. Oconnor, P. J. Vansoest, D. G. Fox and J. B. Russell. 1992. A net carbohydrate and protein system for evaluating cattle diets .2. Carbohydrate and protein availability. J. Anim. Sci. 70:3562-3577.   DOI
3 Sedgman, C. A., J. H. B. Roy and J. Thomas. 1985a. Digestion, absorption and utilization of single-cell protein by the preruminant calf - abomasal outflow and its composition from calves given milk-substitute diets containing varying amounts of either bacterial or yeast protein. Br. J. Nutr. 53:673-689.   DOI   ScienceOn
4 Sedgman, C. A., J. H. B. Roy, J. Thomas, I. J. F. Stobo and P. Ganderton. 1985b. Digestion, absorption and utilization of single-cell protein by the preruminant calf - the true digestibility of milk and bacterial protein and the apparent digestibility and utilization of their constituent amino acids. Br. J. Nutr. 54:219-244.   DOI   ScienceOn
5 AOAC. 1984. Official methods of analysis. 14th edn. Association of Official Analytical Chemists, Arlington, VA, USA.
6 Liu, Z. J. and N. P. McMeniman. 2001. Effect of supplementation with a by-product of molasses fermentation or a non-protein nitrogen/mineral mix on feed intake and microbial protein supply in sheep consuming chopped oat (Avena sativa) hay. Small Rumin. Res. 41:229-233.   DOI   ScienceOn
7 Licitra, G., P. J. Van Soest, I. Schadt, S. Carpino and C. J. Sniffen. 1999. Influence of the concentration of the protease from streptomyces griseus relative to ruminal protein degradability. Anim. Feed Sci. Technol. 77:99-113.   DOI   ScienceOn
8 Licitra, G., F. Lauria, S. Carpino, I. Schadt, C. J. Sniffen and P. J. Van Soest. 1998. Improvement of the streptomyces griseus method for degradable protein in ruminant feeds. Anim. Feed Sci. Technol. 72:1-10.   DOI   ScienceOn
9 Bohnert, D. W., B. T. Larson, M. L. Bauer, A. F. Branco, K. R. McLeod, D. L. Harmon and G. E. Mitchell. 1999. Nutritional evaluation of poultry by-product meal as a protein source for ruminants: Small intestinal amino acid flow and disappearance in steers. J. Anim. Sci. 77:1000-1007.   DOI
10 Kim, H. K., C. W. Kim, J. K. Ha and S. Y. Yang. 1997. Condensed molasses fermentation solubles from monosodium glutamate production as a liquid protein supplement for ruminants 1. Chemical composition and effects of different levels of CMS on the nutrient digestibility and rumen fermentation in sheep. Kor. J. Anim. Nutr. Feed 21:207-218.
11 Kellems, R. O., M. S. Aseltine and D. C. Church. 1981. Evaluation of single cell protein from pulp mills - laboratory analyses and in vivo digestibility. J. Anim. Sci. 53:1601-1608.   DOI
12 Johnson, D. E. and R. L. Remillard. 1983. Nutrient digestibility of brewers single cell protein. J. Anim. Sci. 56:735-739.   DOI
13 Hsu, J. C., T. W. Perry and M. T. Mohler. 1984. Utilization of potato-corn biosolids single-cell protein and potato-corn primary waste by beef cattle. J. Anim. Sci. 58:1292-1299.   DOI
14 Lee, J. H., B. O. Kwack, H. D. Kim, S. S. Shim, Y. G. Ko, S. S. Lee, W. Y. Kim, J. K. Ha and I. K. Han. 1998. Studies on nutritive value of lysine fermentation by-product as a protein source for ruminants II. Kor. J. Anim. Sci. 22:381-390.
15 Schofield, P., R. E. Pitt and A. N. Pell. 1994. Kinetics of fiber digestion from in vitro gas production. J. Anim. Sci. 72:2980- 2991.   DOI
16 Kumar, R., D. N. Kamra, Neeta Agarwal and L. C. Chaudhary. 2007. In vitro methanogenesis and fermentation of feeds containing oil seed cakes with rumen liquor of buffalo. Asian- Aust. J. Anim. Sci. 20:1196-1200.   과학기술학회마을   DOI
17 Piao, X. S., Y. K. Han, S. H. Bae, H. Lee and I. K. Han. 1998. Evaluation of CM (cell mass from lysine fermentation) as an alternative protein source in broiler diets. Asian-Aust. J. Anim. Sci. 11:550-558.   DOI
18 Russell, J. B., J. D. Oconnor, D. G. Fox, P. J. Vansoest and C. J. Sniffen. 1992. A net carbohydrate and protein system for evaluating cattle diets .1. Ruminal fermentation. J. Anim. Sci. 70:3551-3561.   DOI
19 Licitra, G., T. M. Hernandez and P. J. VanSoest. 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 57:347-358.   DOI   ScienceOn
20 Krishnamoorthy, U., C. J. Sniffen, M. D. Stern and P. J. Vansoest. 1983. Evaluation of a mathematical model of rumen digestion and an in vitro simulation of rumen proteolysis to estimate the rumen undegraded nitrogen content of feedstuffs. Br. J. Nutr. 50:555-568.   DOI   ScienceOn
21 Kondo, Makoto, Kazumi Kita and Hiro-omi Yokota. 2007. Ensiled or oven-dried green tea by-product as protein feedstuffs: Effects of tannin on nutritive value in goats. Asian-Aust. J. Anim. Sci. 20:880-886.   과학기술학회마을   DOI
22 Zinn, R. A. and F. N. Owens. 1986. A rapid procedure for purine measurement and its use for estimating net ruminal protein synthesis. Can. J. Anim. Sci. 66:157-166.   DOI
23 Chaney, A. L. and E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clin. Chem. 8:130-132.
24 Hannon, K. and A. Trenkle. 1990. Evaluation of condensed molasses fermentation solubles as a nonprotein nitrogen source for ruminants. J. Anim. Sci. 68:2634-2641.   DOI
25 France, J., M. S. Dhanoa, M. K. Theodorou, S. J. Lister, D. R. Davies and D. Isac. 1993. A model to interpret gas accumulation profiles associated with in vitro degradation of ruminant feeds. J. Theor. Biol. 163:99-111.   DOI   ScienceOn
26 Ha, J. K., H. D. Kim, S. S. Shim, J. H. Lee, Y. G. Ko, B. O. Kwack, S. S. Lee, W. Y. Kim and I. K. Han. 1998. Studies on nutritive value of lysine fermentation by-product as a protein source for ruminants I. Kor. J. Anim. Sci. 22:371-380.
27 Fox, D. G., L. O. Tedeschi, T. P. Tylutki, J. B. Russell, M. E. Van Amburgh, L. E. Chase, A. N. Pell and T. R. Overton. 2004. The Cornell net carbohydrate and protein system model for evaluating herd nutrition and nutrient excretion. Anim. Feed Sci. Technol. 112:29-78.   DOI   ScienceOn
28 Van Soest, P. J., J. B. Robertson and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597.   DOI   ScienceOn
29 Wanapat, M., C. Promkot and S. Wanapat. 2006. Effect of cassoyurea pellet as a protein source in concentrate on ruminal fementation and digestibility in cattle. Asian-Aust. J. Anim. Sci. 19:1004-1009.   과학기술학회마을   DOI
30 Tilley, J. M. A. and R. A. Terry. 1963. A two-stage technique for the in vitro digestion of forage crops. J. Br. Grassland Soc. 18:104-111.   DOI
31 SAS Institute Inc. 2002. User's guide: Statistics, version 9th edn. SAS Institute, Inc., Cary, NC.
32 Orskov, E. R. and I. Mcdonald. 1979. Estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92:499- 503.   DOI
33 Menke, K. H. and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28:7-55.
34 National Research Council. 2001. Nutrient requirements of dairy cattle. 7th edn. National Academy Press, Washington, DC, USA.
35 Anupama and P. Ravindra. 2000. Value-added food: Single cell protein. Biotechnol. Adv. 18:459-479.   DOI   ScienceOn
36 England, M. L., G. A. Broderick, R. D. Shaver and D. K. Combs. 1997. Comparison of in situ and in vitro techniques for measuring ruminal degradation of animal by-product proteins. J. Dairy Sci. 80:2925-2931.   DOI   ScienceOn
37 Broderick, G. A., N. De Leon and Y. Nakamura. 2000. Potential of fermentation byproducts as nitrogen supplements for lactating dairy cows. J. Dairy Sci. 83:2548-2556.   DOI   ScienceOn