• 제목/요약/키워드: soyasaponins

검색결과 21건 처리시간 0.024초

A fragmentation database of soyasaponins by liquid chromatography with a photodiode array detector and tandem mass spectrometry

  • Son, Haereon;Mukaiyama, Kyosuke;Omizu, Yohei;Tsukamoto, Chigen
    • 분석과학
    • /
    • 제34권4호
    • /
    • pp.172-179
    • /
    • 2021
  • Oleanane-type triterpenoids exist as secondary metabolites in various plants. In particular, soyasaponin, an oleanane-type triterpenoid, is abundant in the hypocotyl of soybean, one of the most widely cultivated crops in the world. Depending on their chemical structure, soyasaponins are categorized as group A saponins or group DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one) saponins. The different soyasaponin chemical structures present different health functionalities and taste characteristics. However, conventional phenotype screening of soybean requires a substantial amount of time for functionality of soyasaponins. Therefore, we attempted to use liquid chromatography with a photodiode array detector and tandem mass spectrometry (LC-PDA/MS/MS) for accurately predicting the phenotype and chemical structure of soyasaponins in the hypocotyl of five common soybean natural mutants. In this method, the aglycones (soyasapogenol A [SS-A] and soyasapogenol B [SS-B]) were detected after acid hydrolysis. These results indicated that the base peak and fragmentation differ depending on the chemical structure of soyasaponin with aglycone. Thus, a fragmentation database can help predict the chemical structure of soyasaponins in soyfoods and plants.

Soy Isoflavones and Soyasaponins: Characteristics and Physiological Functions

  • Lee, Yoon-Bok;Lee, Hyong-Joo;Kim, Chung-Ho;Lee, Soo-Bok;Sohn, Heon-Soo
    • Journal of Applied Biological Chemistry
    • /
    • 제48권2호
    • /
    • pp.49-57
    • /
    • 2005
  • Soy is an important food in Asia and many studies have suggested that the low incidences of chronic diseases in Asian countries are associated with diets that are rich in soy. Soy contains many kinds of phytochemicals, and soy isoflavones and soyasaponins have received considerable attention. Twelve isoflavone components have been isolated from soy: three aglycones (daidzein, genistein, and glycitein), and their respective nine glucosidic conjugates. Soy isoflavones are similar in structure to estrogen and exhibit both estrogenic and antiestrogenic activities. Soy isoflavones exhibit anticancer activity, can reduce the risk of cardiovascular disease, and are beneficial to brain and bone health. Soyasaponins are divided into three groups (A, B, and E saponins), and they exhibit hypocholesterolemic, anticancer, hepatoprotective, antioxidative, and anti-human-immunodeficiency-virus effects. Despite the abundant literature suggesting that soy isoflavones and soyasaponins have potential applications in preventive medicine, further research is needed to standardize dosages and ensure their efficacy.

Composition and Content of Soyasaponins and Their Interaction with Chemical Components in Different Seed-Size Soybeans

  • Kim Sun-Lim;Berhow Mark A.;Kim Jung-Tae;Chung Ill-Min;Chi Hee-Youn;Song Jin;Park Nam-Kyu;Son Jong-Rok
    • 한국작물학회지
    • /
    • 제51권4호
    • /
    • pp.340-347
    • /
    • 2006
  • Soyasaponins $A_1$, DDMP-conjugated group B soyasaponins ${\alpha}g\;and\;{\beta}g$, non-DDMP counterpart soyasaponin I, II+III, and DDMP moiety were quantified in the large-, midium-, and small-seed soybean varieties. Protein contents were ranged from 38.1% to 41.8%, and oil contents were ranged from 15.5% to 18.9%, respectively. Oil contents in the large-seed varieties were significantly higher than those of medium- and small-seed varieties. Among detected soyasaponin peaks, ${\beta}g$ was a major soyasaponin in DDMP-conjugated group B soyasaponins followed by soyasaponin I, DDMP moiety and $A_1$. Soyasaponin concentration among different seed size soybean varieties. The soyasaponin concentration of mediumseed ($4014.5{\mu}g/g$) was slightly higher than those of largeseed ($3755.0{\mu}g/g$) and small-seed varieties ($3620.3{\mu}g/g$), however, the differences was statistically not significant. The composition rates of soyasaponins in the large-size seeds were 9.4% of soyasaponin $A_1$, 26.5% of DDMP-conjugated soyasaponins, 49.9% of non-DDMP counterpart soyasaponins, and 14.2% of DDMP moiety, respectively. Similar results were observed in the composition ratios of middle- and small-size seeds. Oil content and C:N ratio showed the significant positive correlations with total soyasaponin concentration, while the 100-seed weight, fiber, and ash contents showed the negative correlations with total soyasaponin but statistically not significant. It was noted that protein contents didn't have any relationship with group A, group B, DDMP moiety, and total soyasaponin. This fact suggested that protein contents are not affects the variation of soyasaponin concentration.

Soyasaponins from Soybean Flour Medium for the Liquid Culture of Ganoderma applanatum

  • Lee, So-Young;Kim, Ju-Sun;Shim, Sang-Hee;Kang, Sam-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권10호
    • /
    • pp.3650-3654
    • /
    • 2011
  • Two new unusual soyasaponins named 6"-O-methyldehydrosoyasaponin I(7) and desglucosylsoyasaponin $A_1$ (10) along with eight known saponins, dehydrosoyasaponin IV (1), dehydrosoyasaponin III (= impatienoside A) (2), soyasaponin III (3), dehydrosoyasaponin II (= soyasaponin Bg) (4), soyasaponin II (5), dehydrosoyasaponin I (= soyasaponin Be) (6), soyasaponin I (8), and kudzusaponin $SA_3$ (9), were isolated as their methyl esters and identified from the liquid culture of G. applanatum. Their structures were determined by chemical and spectroscopic analyses including 1D- and 2D-NMR as well as by comparison of their spectroscopic data with those of the reported in literatures. Although dehydrosoyasaponin IV was identified by LC-MS/MS method from soy protein isolate, this is the first report of the isolation of this compound. Dehydrosoyasaponin III (2) and kudzusaponin $SA_3$ (9) were also isolated for the first time from soybean. The presence of soyasaponins in Ganoderma species seems to be unusual feature. Thus, we presumed that compounds 1-10 might all be derived from the defatted soybean flour which was added to the culture medium as a nitrogen source.

Soyasaponin의 RBL-2H3 세포에서 탈과립화 억제 효과 (Inhibitory Effects of Soyasaponins on Antigen-induced Degranulation in RBL-2H3 Cells)

  • 양승환;이정아;이재연;안은경;신태선;찌갱 쯔카모토;정규화;서주원
    • Journal of Applied Biological Chemistry
    • /
    • 제58권3호
    • /
    • pp.287-290
    • /
    • 2015
  • 본 연구에서는 콩의 배축(hypocotyls)에서 분리된 4종의 soyasaponin(Aa, Ab, bg, DDMP)에 대해 RBL-2H3 세포를 이용하여 항알레르기 활성을 확인하고자 하였다. RBL-2H3 세포에서 soyasaponin 화합물들의 세포독성을 확인해 본 결과, 4종 모두 세포독성이 없었고 ${\beta}$-hexosaminidase assay를 통해 비만세포의 탈과립 억제 효능을 확인해 본 결과 대조군으로 사용한 Ketotifen fumarate($IC_{50}$: 38.77mM)와 비교하여 4종 모두 ${\beta}$-hexosaminidase 억제 효능이 있는 것을 확인하였다. 또한, soyasaponin 화합물들은 RBL-2H3 세포에서 탈과립 후 유리되는 대표적인 물질인 histamine의 분비 억제에도 효능이 있음을 확인하였고 이 중 Soyasaponin DDMP가 가장 효능이 우수한 것으로 판단된다.

콩 Saponin의 생리활성 기능과 함량변이 (Biological Activities of Soyasaponins and Their Genetic and Environmental Variations in Soybean)

  • 김용호
    • 한국작물학회지
    • /
    • 제48권
    • /
    • pp.49-57
    • /
    • 2003
  • There is much evidence suggesting that compounds present in soybean can prevent cancer in many different organ systems. Especially, soybean is one of the most important source of dietary saponins, which have been considered as possible anticarcinogens to inhibit tumor development and major active components contributing to the cholesterol-towering effect. Also they were reported to inhibit of the infectivity of the AIDS virus (HIV) and the Epstein-Barr virus. The biological activity of saponins depend on their specific chemical structures. Various types of triterpenoid saponins are present in soy-bean seeds. Among them, group B soyasaponis were found as the primary soyasaponins present in soybean, and th e 2, 3-dihydro-2, 5-dihydroxy-6- methyl-4H-pyran-4-one(DDMP)-conjugated soyasaponin $\alpha\textrm{g}$, $\beta\textrm{g}$, and $\beta$ a were the genuine group B saponins, which have health benefits. On the other hand, group A saponins are responsible for the undesirable bitter and astringent taste in soybean. The variation of saponin composition in soybean seeds is explained by different combinations of 9 alleles of 4 gene loci that control the utilization of soyasapogenol glycosides as substrates. The mode of inheritance of saponin types is explained by a combination of co-dominant, dominant and recessive acting genes. The funtion of theses genes is variety-specific and organ specific. Therefore distribution of various saponins types was different according to seed tissues. Soyasaponin $\beta\textrm{g}$ was detected in both parts whereas $\alpha\textrm{g}$ and $\beta$ a was detected only in hypocotyls and cotyledons, respectively. Soyasaponins ${\gamma}$g and $\gamma\textrm{g}$ were minor saponin constituents in soybean. In case group A saponins were mostly detected in hypocotyls. Also, the total soyasaponin contents varied among different soy-bean varieties and concentrations in the cultivated soy-beans were 2-fold lower than in the wild soybeans. But the contents of soyasaponin were not so influenced by environmental effects. The composition and concentration of soyasaponins were different among the soy products (soybean flour, soycurd, tempeh, soymilk, etc.) depending on the processing conditions.

콩나물 생육기간 중 사포닌 함량의 변화 (Changes of Soyasaponin Contents in Soybean Sprouts)

  • 장서영;한상준
    • 한국작물학회지
    • /
    • 제61권1호
    • /
    • pp.57-63
    • /
    • 2016
  • 콩 재배 및 이용확대를 위한 기초자료를 얻기 위해 발아과정 중 기능성 성분인 soyasaponin의 함량 변화를 조사하였다. 1. Soyasaponin I과 soyasaponin II의 함량은 품종에 따라 차이가 있었으나 발아과정 중 떡잎부위에서 함량이 10배 이상 증가하였고, soyasaponin I은 배축에서도 종자 당 이 $140{\sim}360{\mu}g$ 수준의 함량을 나타내었다. 2. Soyasaponin III 및 soyasaponin V의 함량은 발아를 통해 증가하는 경향이었고, soyasaponin V의 경우 배축에서 그 함량이 급격히 증가하는 것으로 나타났다.

콩 함유 사포닌의 종류 및 함량 분석 (HPLC/MS/MS Method for Determination of Soyasaponins in the Soybean Varieties)

  • 한상준
    • 한국작물학회지
    • /
    • 제56권3호
    • /
    • pp.244-249
    • /
    • 2011
  • 본 연구는 콩 함유 사포닌의 함량을 쉽고 빠르게 정량할 수 있는 방법을 개발하기 위하여 시도하였다. 사포닌 표준 물질인 soyasaponin I은 대두에서 직접 분리하여 동정하였고, 분석은 HPLC/MS/MS를 이용하였으며 그 결과는 다음과 같다. 1. DAD 또는 ELSD를 이용하여 분석할 때보다 전처리 과정을 획기적으로 줄일 수 있어 신품종 육성의 선발과 같은 대량의 분석에 적합하였다. 2. Soyasaponin I의 함량은 나물콩과 같은 소립종에서 대립종에 비해 함량이 유의하게 높은 것으로 나타났다.

Analysis of soyasaponin content and biosynthesis-related gene expression in young pea (Pisum sativum L.) sprouts

  • Gang Deok Han;HanGyeol Lee;Jae-Hyeok Park;Young Jae Yun;Gee Woo Kim;Sangyun Jeong;So-Yeon Moon;Hye-Young Seo;Young-Cheon, Kim;Woo Duck Seo;Jeong Hwan Lee
    • Journal of Plant Biotechnology
    • /
    • 제50권
    • /
    • pp.70-75
    • /
    • 2023
  • In legumes, soyasaponins, one of triterpenoid saponins, are major components of secondary metabolites with a more diverse array of bioactive chemicals. Although the biosynthetic pathway of soyasaponins has been largely studied in soybean, the study on the soyasaponin contents and biosynthesis-related gene expression in pea (Pisum sativum L.) is poorly understood. Here, we found the accumulation of only soyasaponin Bb component in the sprouts of two Korean domestic pea cultivars (Dachung and Sachul). This pattern was consistent with our observation that increased expression of PsUGT73P2 and PsUGT91H4 genes, but not PsCYP72A69, could be responsible for biosynthesis of only soyasaponin Bb in pea by examining their gene expression. However, gradual accumulation of soyasaponin Bb at developmental stages was not consistent with the expression of PsUGT73P2 and PsUGT91H4, suggesting that the changes of their protein activities may affect the accumulation patterns of soyasaponin Bb. We also revealed that the increased expression levels of PsUGT73P2 and PsUGT91H4 during light to dark transition led to increase of soyasaponin Bb contents. Collectively, our results provided a molecular basis of metabolic engineering for enhancing useful soyasaponin Bb metabolites in Korean domestic pea cultivars.