• Title/Summary/Keyword: soyasaponins

Search Result 21, Processing Time 0.024 seconds

A fragmentation database of soyasaponins by liquid chromatography with a photodiode array detector and tandem mass spectrometry

  • Son, Haereon;Mukaiyama, Kyosuke;Omizu, Yohei;Tsukamoto, Chigen
    • Analytical Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.172-179
    • /
    • 2021
  • Oleanane-type triterpenoids exist as secondary metabolites in various plants. In particular, soyasaponin, an oleanane-type triterpenoid, is abundant in the hypocotyl of soybean, one of the most widely cultivated crops in the world. Depending on their chemical structure, soyasaponins are categorized as group A saponins or group DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one) saponins. The different soyasaponin chemical structures present different health functionalities and taste characteristics. However, conventional phenotype screening of soybean requires a substantial amount of time for functionality of soyasaponins. Therefore, we attempted to use liquid chromatography with a photodiode array detector and tandem mass spectrometry (LC-PDA/MS/MS) for accurately predicting the phenotype and chemical structure of soyasaponins in the hypocotyl of five common soybean natural mutants. In this method, the aglycones (soyasapogenol A [SS-A] and soyasapogenol B [SS-B]) were detected after acid hydrolysis. These results indicated that the base peak and fragmentation differ depending on the chemical structure of soyasaponin with aglycone. Thus, a fragmentation database can help predict the chemical structure of soyasaponins in soyfoods and plants.

Soy Isoflavones and Soyasaponins: Characteristics and Physiological Functions

  • Lee, Yoon-Bok;Lee, Hyong-Joo;Kim, Chung-Ho;Lee, Soo-Bok;Sohn, Heon-Soo
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.2
    • /
    • pp.49-57
    • /
    • 2005
  • Soy is an important food in Asia and many studies have suggested that the low incidences of chronic diseases in Asian countries are associated with diets that are rich in soy. Soy contains many kinds of phytochemicals, and soy isoflavones and soyasaponins have received considerable attention. Twelve isoflavone components have been isolated from soy: three aglycones (daidzein, genistein, and glycitein), and their respective nine glucosidic conjugates. Soy isoflavones are similar in structure to estrogen and exhibit both estrogenic and antiestrogenic activities. Soy isoflavones exhibit anticancer activity, can reduce the risk of cardiovascular disease, and are beneficial to brain and bone health. Soyasaponins are divided into three groups (A, B, and E saponins), and they exhibit hypocholesterolemic, anticancer, hepatoprotective, antioxidative, and anti-human-immunodeficiency-virus effects. Despite the abundant literature suggesting that soy isoflavones and soyasaponins have potential applications in preventive medicine, further research is needed to standardize dosages and ensure their efficacy.

Composition and Content of Soyasaponins and Their Interaction with Chemical Components in Different Seed-Size Soybeans

  • Kim Sun-Lim;Berhow Mark A.;Kim Jung-Tae;Chung Ill-Min;Chi Hee-Youn;Song Jin;Park Nam-Kyu;Son Jong-Rok
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.4
    • /
    • pp.340-347
    • /
    • 2006
  • Soyasaponins $A_1$, DDMP-conjugated group B soyasaponins ${\alpha}g\;and\;{\beta}g$, non-DDMP counterpart soyasaponin I, II+III, and DDMP moiety were quantified in the large-, midium-, and small-seed soybean varieties. Protein contents were ranged from 38.1% to 41.8%, and oil contents were ranged from 15.5% to 18.9%, respectively. Oil contents in the large-seed varieties were significantly higher than those of medium- and small-seed varieties. Among detected soyasaponin peaks, ${\beta}g$ was a major soyasaponin in DDMP-conjugated group B soyasaponins followed by soyasaponin I, DDMP moiety and $A_1$. Soyasaponin concentration among different seed size soybean varieties. The soyasaponin concentration of mediumseed ($4014.5{\mu}g/g$) was slightly higher than those of largeseed ($3755.0{\mu}g/g$) and small-seed varieties ($3620.3{\mu}g/g$), however, the differences was statistically not significant. The composition rates of soyasaponins in the large-size seeds were 9.4% of soyasaponin $A_1$, 26.5% of DDMP-conjugated soyasaponins, 49.9% of non-DDMP counterpart soyasaponins, and 14.2% of DDMP moiety, respectively. Similar results were observed in the composition ratios of middle- and small-size seeds. Oil content and C:N ratio showed the significant positive correlations with total soyasaponin concentration, while the 100-seed weight, fiber, and ash contents showed the negative correlations with total soyasaponin but statistically not significant. It was noted that protein contents didn't have any relationship with group A, group B, DDMP moiety, and total soyasaponin. This fact suggested that protein contents are not affects the variation of soyasaponin concentration.

Soyasaponins from Soybean Flour Medium for the Liquid Culture of Ganoderma applanatum

  • Lee, So-Young;Kim, Ju-Sun;Shim, Sang-Hee;Kang, Sam-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3650-3654
    • /
    • 2011
  • Two new unusual soyasaponins named 6"-O-methyldehydrosoyasaponin I(7) and desglucosylsoyasaponin $A_1$ (10) along with eight known saponins, dehydrosoyasaponin IV (1), dehydrosoyasaponin III (= impatienoside A) (2), soyasaponin III (3), dehydrosoyasaponin II (= soyasaponin Bg) (4), soyasaponin II (5), dehydrosoyasaponin I (= soyasaponin Be) (6), soyasaponin I (8), and kudzusaponin $SA_3$ (9), were isolated as their methyl esters and identified from the liquid culture of G. applanatum. Their structures were determined by chemical and spectroscopic analyses including 1D- and 2D-NMR as well as by comparison of their spectroscopic data with those of the reported in literatures. Although dehydrosoyasaponin IV was identified by LC-MS/MS method from soy protein isolate, this is the first report of the isolation of this compound. Dehydrosoyasaponin III (2) and kudzusaponin $SA_3$ (9) were also isolated for the first time from soybean. The presence of soyasaponins in Ganoderma species seems to be unusual feature. Thus, we presumed that compounds 1-10 might all be derived from the defatted soybean flour which was added to the culture medium as a nitrogen source.

Inhibitory Effects of Soyasaponins on Antigen-induced Degranulation in RBL-2H3 Cells (Soyasaponin의 RBL-2H3 세포에서 탈과립화 억제 효과)

  • Yang, Seung Hwan;Lee, Jung A;Lee, Jae Yeon;Ahn, Eun-Kyung;Shin, Tai-Sun;Tsukamoto, Chigen;Chung, Gyuhwa;Suh, Joo-Won
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.3
    • /
    • pp.287-290
    • /
    • 2015
  • Soyasaponins are glycosylated, which gives rise to a wide diversity of structures and functions. We evaluated for inhibitory effects of 4 soyasaponins on antigen-induced degranulation in RBL-2H3 Cells. 4 soyasaponins had shown dose-dependently inhibited histamine and ${\beta}$-hexosaminidase.

Biological Activities of Soyasaponins and Their Genetic and Environmental Variations in Soybean (콩 Saponin의 생리활성 기능과 함량변이)

  • 김용호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48
    • /
    • pp.49-57
    • /
    • 2003
  • There is much evidence suggesting that compounds present in soybean can prevent cancer in many different organ systems. Especially, soybean is one of the most important source of dietary saponins, which have been considered as possible anticarcinogens to inhibit tumor development and major active components contributing to the cholesterol-towering effect. Also they were reported to inhibit of the infectivity of the AIDS virus (HIV) and the Epstein-Barr virus. The biological activity of saponins depend on their specific chemical structures. Various types of triterpenoid saponins are present in soy-bean seeds. Among them, group B soyasaponis were found as the primary soyasaponins present in soybean, and th e 2, 3-dihydro-2, 5-dihydroxy-6- methyl-4H-pyran-4-one(DDMP)-conjugated soyasaponin $\alpha\textrm{g}$, $\beta\textrm{g}$, and $\beta$ a were the genuine group B saponins, which have health benefits. On the other hand, group A saponins are responsible for the undesirable bitter and astringent taste in soybean. The variation of saponin composition in soybean seeds is explained by different combinations of 9 alleles of 4 gene loci that control the utilization of soyasapogenol glycosides as substrates. The mode of inheritance of saponin types is explained by a combination of co-dominant, dominant and recessive acting genes. The funtion of theses genes is variety-specific and organ specific. Therefore distribution of various saponins types was different according to seed tissues. Soyasaponin $\beta\textrm{g}$ was detected in both parts whereas $\alpha\textrm{g}$ and $\beta$ a was detected only in hypocotyls and cotyledons, respectively. Soyasaponins ${\gamma}$g and $\gamma\textrm{g}$ were minor saponin constituents in soybean. In case group A saponins were mostly detected in hypocotyls. Also, the total soyasaponin contents varied among different soy-bean varieties and concentrations in the cultivated soy-beans were 2-fold lower than in the wild soybeans. But the contents of soyasaponin were not so influenced by environmental effects. The composition and concentration of soyasaponins were different among the soy products (soybean flour, soycurd, tempeh, soymilk, etc.) depending on the processing conditions.

Changes of Soyasaponin Contents in Soybean Sprouts (콩나물 생육기간 중 사포닌 함량의 변화)

  • Chang, Seo-Young;Han, Sangjun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.1
    • /
    • pp.57-63
    • /
    • 2016
  • Soyasaponin I, II, III and V contents were investigated in seed, cotyledons and sprouts of soybean (Glycine max (L.) Merill) subjected to germination over five days. High-performance liquid chromatography coupled with tandem mass spectrometric (HPLC-MS/MS) method was used to evaluate the content of soyasaponins. Soyasaponins contents were different according to the varieties. Germination of soybeans dramatically increased soyasaponin contents in soybean sprouts in a time-dependent manner. Cotyledons had a higher contents of soyasaponins compared to dried seed (p<0.05). After five days of germination, Soyasaponin I and II increased 10 times higher after germination. Soyasaponin I and II are major metabolites in cotyledons and hypocotyls. Soyasaponin III and V were also detected in seed and increased depended on the germination stage. Soyasaponin V was at its highest levels in the hypocotyl, almost 7 times higher than the initial content in soybean seeds. Therefore, the germination of soybean sprouts significantly increased soyasaponin content.

HPLC/MS/MS Method for Determination of Soyasaponins in the Soybean Varieties (콩 함유 사포닌의 종류 및 함량 분석)

  • Han, Sang-Jun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.3
    • /
    • pp.244-249
    • /
    • 2011
  • A sensitive and rapid high-performance liquid chromatographic-tandem mass spectrometric (HPLC/MS/MS) assay was developed for the determination of soyasaponins in soybean. Among soyasaponins, soyasaponin I was isolated and characterized from methanol extracts of soybean as analytical standards and the development of a new analytical procedure for quantification of its content in various cultivars. The structures of these compound was elucidated by $^1H$, $^{13}C$ NMR experiments and by mass spectrometric analysis. Aqueous ethanol extracts of soybean samples were injected on an Agilent XDB-C18 column ($4.6mm{\times}50mm$, $1.8{\mu}m$) with a mobile phase consisting of 10 mM ammonium acetate-acetonitrile, a flow rate of 0.3 mL/min and a total run time of 8 min. Detection was performed by mass spectrometer bin the multiple reaction monitoring (MRM) mode with negative electrospray ionization (ESI) m/z at 941 ${\rightarrow}$ 615 for soyasaponin I. In the 9 soybean samples, contents of soyasaponin I ranged from 205 to 726 mg/kg, and correlated negatively with seed size.

Analysis of soyasaponin content and biosynthesis-related gene expression in young pea (Pisum sativum L.) sprouts

  • Gang Deok Han;HanGyeol Lee;Jae-Hyeok Park;Young Jae Yun;Gee Woo Kim;Sangyun Jeong;So-Yeon Moon;Hye-Young Seo;Young-Cheon, Kim;Woo Duck Seo;Jeong Hwan Lee
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.70-75
    • /
    • 2023
  • In legumes, soyasaponins, one of triterpenoid saponins, are major components of secondary metabolites with a more diverse array of bioactive chemicals. Although the biosynthetic pathway of soyasaponins has been largely studied in soybean, the study on the soyasaponin contents and biosynthesis-related gene expression in pea (Pisum sativum L.) is poorly understood. Here, we found the accumulation of only soyasaponin Bb component in the sprouts of two Korean domestic pea cultivars (Dachung and Sachul). This pattern was consistent with our observation that increased expression of PsUGT73P2 and PsUGT91H4 genes, but not PsCYP72A69, could be responsible for biosynthesis of only soyasaponin Bb in pea by examining their gene expression. However, gradual accumulation of soyasaponin Bb at developmental stages was not consistent with the expression of PsUGT73P2 and PsUGT91H4, suggesting that the changes of their protein activities may affect the accumulation patterns of soyasaponin Bb. We also revealed that the increased expression levels of PsUGT73P2 and PsUGT91H4 during light to dark transition led to increase of soyasaponin Bb contents. Collectively, our results provided a molecular basis of metabolic engineering for enhancing useful soyasaponin Bb metabolites in Korean domestic pea cultivars.