• Title/Summary/Keyword: source modeling

Search Result 1,171, Processing Time 0.028 seconds

Power Distribution Network Modeling using Block-based Approach

  • Chew, Li Wern
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.75-79
    • /
    • 2013
  • A power distribution network (PDN) is a network that provides connection between the voltage source supply and the power/ground terminals of a microprocessor chip. It consists of a voltage regulator module, a printed circuit board, a package substrate, a microprocessor chip as well as decoupling capacitors. For power integrity analysis, the board and package layouts have to be transformed into an electrical network of resistor, inductor and capacitor components which may be expressed using the S-parameters models. This modeling process generally takes from several hours up to a few days for a complete board or package layout. When the board and package layouts change, they need to be re-extracted and the S-parameters models also need to be re-generated for power integrity assessment. This not only consumes a lot of resources such as time and manpower, the task of PDN modeling is also tedious and mundane. In this paper, a block-based PDN modeling is proposed. Here, the board or package layout is partitioned into sub-blocks and each of them is modeled independently. In the event of a change in power rails routing, only the affected sub-blocks will be reextracted and re-modeled. Simulation results show that the proposed block-based PDN modeling not only can save at least 75% of processing time but it can, at the same time, keep the modeling accuracy on par with the traditional PDN modeling methodology.

Modeling of EMI Source Using Inverse Techniques (역산 기법을 이용한 EMI Source의 모델링)

  • Im, Chang-Hwan;Jung, Hyun-Kyo;Kim, Hyeong-Seok;Lee, Jeong-Hae
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.2 no.1
    • /
    • pp.37-44
    • /
    • 2003
  • In this paper, a technique to estimate EMI source distribution on a digital circuit board ir introduced. A sensitivity analysis method is applied to reconstruct the source distribution from measured electric field data. Results from a single-layer measurement and a double-layer measurement are compared. It will be shown, from the simulation, that the use of sensitivity analysis for the EMI source reconstruction problem can be a very promising technique.

  • PDF

Modeling of EMI Source Using Inverse Techniques (역산 기법을 이용한 EMI Source의 모델링)

  • Im Chang-Hwan;Jung Hyun-Kyo;Kim Hyeong-Seok;Lee Jeong-Hae
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.6-9
    • /
    • 2002
  • In this paper a technique to estimate EMI source distribution on a digital circuit board is introduced. A sensitivity analysis method is applied to reconstruct the source distribution from measured electric field data. Results from a single-layer measurement and a double-layer measurement are compared. It will be shown, from the simulation, that the use of sensitivity analysis for the EMI source reconstruction problem can be a very promising technique.

  • PDF

Heat Source Modeling of GMAW Considering Metal Transfer (용적이행을 고려한 GMA 용접의 열원 모델링)

  • 정기남;이지혜;이재영;유중돈
    • Journal of Welding and Joining
    • /
    • v.22 no.2
    • /
    • pp.69-77
    • /
    • 2004
  • The Gaussian heat source has been widely used to simulate the heat flux of the welding we, and applied to calculating the temperature distribution of a workpiece. The conventional two-dimensional Gaussian heat source for the GMAW is modified in this work by decomposing the arc heat into heats of the cathode and metal transfer. The efficiency and effective arc radius of each heat source are determined analytically for the free-flight mode such as the globular and spray modes. The temperature distribution and weld geometry are calculated using the finite element method, and distribution of the drop heat is found to have significant effects on the penetration. The predicted results show good agreements with the available experimental results, especially with the penetration.

Analysis of contaminated QMS, cleaning and restoration of functions (오염된 QMS의 원인 분석과 세정 및 기능 복원)

  • Kim, Donghoon;Joo, Junghoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.4
    • /
    • pp.179-184
    • /
    • 2015
  • Quadrupole Mass Spectrometers (QMS) is a very useful tool in vacuum process diagnosis. Tungsten filament based ion sources are vulnerable to contamination from process gas monitoring. Common symptoms of quadrupole mass spectrometer malfunction is appearance of unwanted contaminant mass peaks or no detection of any ion peaks. We disassembled used quadrupole mass spectrometer and found out black insulating deposits on inside of ion source parts. Five steps of cleaning procedure were applied and almost full restoration of functions were confirmed in two types of closed ion source quadrupole mass spectrometer. By using a numerical modeling (CFD-ACE+) technique, the electric potential profile of ion source with/without insulating deposit was calculated and showed the possibility of quadrupole mass spectrometer malfunction by the deterioration of designed potential profile inside the ion source.

Thermal analysis inside a small chamber including radiation (미소 챔버 내 복사열전달을 수반한 열유동 해석)

  • Lee, Hyung-Sik;Do, Gi-Jung;Lee, Sang-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.194-198
    • /
    • 2006
  • In this study, numerical modeling was performed to analyze air flow including radiation heat transfer inside a small chamber. Characteristics of heat transfer between source plate and target through glass are investigated for various surface temperature of heat source plate with buoyancy effect due to gravity force. Conduction heat transfer through the glass is considered and heat source plate is assumed to be a black body. Target surface temperature is largely affected by the radiation heat transfer. It can also be seen that as the source temperature increases target surface is dominated by radiation rather than convective heat transfer by air.

  • PDF

In-line Dual-Mode DBR Laser Diode for Terahertz Wave Source

  • Chung, Youngchul
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.461-465
    • /
    • 2020
  • A dual-mode laser terahertz source consisting of two in-line distributed Bragg reflector (DBR) laser diodes (LD) is proposed. It is less susceptible to residual reflections from facets than an in-line dual-mode distributed feedback (DFB) LD. The characteristics of the proposed terahertz source are theoretically investigated using a split-step time-domain simulation. It is shown that terahertz waves of frequencies from 385 GHz to 1725 GHz can be generated by appropriate thermal tuning of two DBR LDs. The dual-mode DBR LD terahertz source exhibits good spectral quality for residual facet reflectivity below 0.02, but facet reflectivity of the in-line dual-mode DFB LD terahertz source should be below 0.002 to provide similar spectral quality.

A Electric Power Source Modeling and Simulation for Electric Propulsion Systems of a Fuel Cell Powered Small UAV (소형 연료전지 무인기의 전기추진시스템용 전력원 모델링 및 시뮬레이션)

  • Lee, Bo-Hwa;Park, Poo-Min;Kim, Chun-Taek;Kim, Sung-Yug;Yang, Soo-Seok;Ahn, Seok-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.10
    • /
    • pp.959-965
    • /
    • 2011
  • A modeling and power simulation of a small UAV's electric propulsion systems is described. Each power source is modeled and simulated in Matlab/Simulink and it is compared flight test data during 4 hr 30 min with simulation results about 200 W electric propulsion system using fuel cell and battery as a main power sources. In result, it is properly simulated performance and dynamic characteristic of each electric power source. Through this, it is revealed that the simulation is available as a means of predicting power characteristic variation for electric propulsion systems of different class.

A Study on the World Wide Web Traffic Source Modeling with Self-Similarity (자기 유사성을 갖는 World Wide Web 트래픽 소스 모델링에 관한 연구)

  • 김동일
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.3
    • /
    • pp.416-420
    • /
    • 2002
  • Traditional queueing analyses are very useful for designing a network's capacity and predicting there performances, however most of the predicted results from the queueing analyses are quite different from the realistic measured performance. And recent empirical studies on LAN, WAN and VBR traffic characteristics have indicated that the models used in the traditional Poisson assumption can't properly predict the real traffic properties due to under estimation of the long range dependence of network traffic and self-similarity In this parer self-similar characteristics over statistical approaches and real time network traffic measurements are estimated It is also shown that the self- similar traffic reflects network traffic characteristics by comparing source model.

Study on the aquifer utilization for a ground water heat pump system (지하수 히트펌프 시스템의 대수층 활용 사레 연구)

  • Shim, Byoung-Ohan;Lee, Chul-Woo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.32-35
    • /
    • 2006
  • The validation of a groundwater source heat pump system installation site is estimated by bydrogeothermic model ing. The hydraulic characteristics of the aquifer system is evaluated from pumping and recovery tests. In addition, the temperature distribution by the pumping and the injection of groundwater, and water level fluctuations are simulated by numerical modeling. The total cooling and heating load for the building is designed as 120RT(refrigeration ton) and the ground water source heat pump system covers 50RT as a subsidiary system The scenario of heat pump operation is organized as pumping and inject ion of groundwater that is performed for 8 hours per day in cooling mode for 90 days during the summer season The heat transfer by the injected warm water is limited near the inject ion wells in the simulated temperature distribution. The reason is that the given operation time is too short to expect broad thermal diffusion in large volume of the aquifer in the simulation time The simulated groundwater level and temperature distribution can be used as important data to develope an energy effective pumping and injection well system. Also it will be very useful to evaluate the hydraulic capacity of a target groundwater reservoir.

  • PDF