DOI QR코드

DOI QR Code

In-line Dual-Mode DBR Laser Diode for Terahertz Wave Source

  • Chung, Youngchul (Department of Electronics and Communication Engineering, Kwangwoon University)
  • Received : 2020.08.20
  • Accepted : 2020.10.26
  • Published : 2020.12.25

Abstract

A dual-mode laser terahertz source consisting of two in-line distributed Bragg reflector (DBR) laser diodes (LD) is proposed. It is less susceptible to residual reflections from facets than an in-line dual-mode distributed feedback (DFB) LD. The characteristics of the proposed terahertz source are theoretically investigated using a split-step time-domain simulation. It is shown that terahertz waves of frequencies from 385 GHz to 1725 GHz can be generated by appropriate thermal tuning of two DBR LDs. The dual-mode DBR LD terahertz source exhibits good spectral quality for residual facet reflectivity below 0.02, but facet reflectivity of the in-line dual-mode DFB LD terahertz source should be below 0.002 to provide similar spectral quality.

Keywords

References

  1. H. Nakanishi, S. Fujiwara, K. Takayama, I. Kawayama, H. Murakami, and M. Tonouchi, "Imaging of a polycrystalline silicon solar cell using a laser terahertz emission microscope," Appl. Phys. Express 5, 112301 (2012). https://doi.org/10.1143/apex.5.112301
  2. L. Ho, M. Pepper, and P. Taday, "Signatures and finger-prints," Nat. Photon. 2, 541-543 (2008). https://doi.org/10.1038/nphoton.2008.174
  3. L. Yan, C. Han, and J. Yuan. "Hybrid precoding for 6G terahertz communications: performance evaluation and open problems," in Proc. 2nd 6G Wireless Summit - 6G SUMMIT (Levi, Finland, Mar. 2020), pp. 1-5.
  4. P. J. Moore, Z. J. Chaboyer, and G. Das, "Tunable dual-wavelength fiber laser," Opt. Fiber Technol. 15, 377-379 (2009). https://doi.org/10.1016/j.yofte.2009.04.001
  5. M. Y. Jeon, N. Kim, J. Shin, J. S. Jeong, and S.-P. Han, C. W. Lee, Y. A. Leem, D.-S. Yee, H. S. Chun, and K. H. Park, "Widely tunable dual-wavelength Er3+-doped fiber laser for tunable continuous-wave terahertz radiation," Opt. Express 18, 12291-12297 (2010). https://doi.org/10.1364/OE.18.012291
  6. B. Sartorius, M. Schlak, D. Stanze, H. Roehle, H. Kunzel, D. Schmidt, H.-G. Bach, R. Kunkel, and M. Schell, "Continuous wave terahertz systems exploiting 1.5 ㎛ telecom technologies," Opt. Express 17, 15001-15007 (2009). https://doi.org/10.1364/OE.17.015001
  7. M. Theurer, T. Gobel, D. Stanze, U. Troppenz, F. Soares, N. Grote, and M. Schell, "Photonic-integrated circuit for continuous-wave THz generation," Opt. Lett. 38, 3724-3726 (2013). https://doi.org/10.1364/OL.38.003724
  8. A. J. Seeds, M. J. Fice, K. Balakier, M. Natrella, O. Mitrofanov, M. Lamponi, M. Chtioui, F. van Dijk, M. Pepper, G. Aeppli, A. G. Davies, P. Dean, E. Linfield, and C. C. Renaud, "Coherent terahertz photonics," Opt. Express 21, 22988-23000 (2013). https://doi.org/10.1364/OE.21.022988
  9. N. Kim, Y. A. Leem, H. Ko, M. Y. Jeon, C. W. Lee, S.-P. Han, D. Lee, and K. H. Park, "Widely tunable 1.55-㎛ detuned dual-mode laser diode for compact continuous-wave THz emitter," ETRI J. 33, 810-813 (2011). https://doi.org/10.4218/etrij.11.0210.0429
  10. N. Kim, H.-C. Ryu, D. Lee, S.-P. Han, H. Ko, K. Moon, J.-W. Park, M. Y. Jeon, and K. H. Park, "Monolithically integrated optical beat sources toward a single-chip broad-band terahertz emitter," Laser Phys. Lett. 10, 085805 (2013). https://doi.org/10.1088/1612-2011/10/8/085805
  11. E. S. Lee, N. Kim, S.-P. Han, D. Lee, W.-H. Lee, K. Moon, I.-M. Lee, J.-H. Shin, and K. H. Park, "SOA-integrated dual-mode laser and PIN-photodiode for compact CW terahertz system," ETRI J. 38, 665-674 (2016). https://doi.org/10.4218/etrij.16.0115.0882
  12. M. Gotoda, T. Nishimura, and Y. Tokuda, "A widely tunable SOA-integrated DBR laser by combination of sampled and superstructure gratings," IEEE J. Lightwave Technol. 23, 2331-2336 (2005). https://doi.org/10.1109/JLT.2005.850039
  13. F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. J. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, "Current status of large-scale InP photonic integrated circuits," IEEE J. Sel. Top. Quantum Electron. 17, 1470-1489 (2011). https://doi.org/10.1109/JSTQE.2011.2114873
  14. B.-S. Kim, Y. Chung, and J.-S. Lee, "An efficient split-step time domain dynamic modeling of DFB/DBR laser diodes," IEEE J. Quantum Electron. 36, 787-794 (2000). https://doi.org/10.1109/3.848349
  15. Y. Chung, "Split-step time-domain modeling of dual-mode DFB laser diode for terahertz wave generation," Microw. Opt. Technol. Lett. 61, 1895-1900 (2019). https://doi.org/10.1002/mop.31829