DOI QR코드

DOI QR Code

A Electric Power Source Modeling and Simulation for Electric Propulsion Systems of a Fuel Cell Powered Small UAV

소형 연료전지 무인기의 전기추진시스템용 전력원 모델링 및 시뮬레이션

  • Received : 2011.06.29
  • Accepted : 2011.09.07
  • Published : 2011.10.01

Abstract

A modeling and power simulation of a small UAV's electric propulsion systems is described. Each power source is modeled and simulated in Matlab/Simulink and it is compared flight test data during 4 hr 30 min with simulation results about 200 W electric propulsion system using fuel cell and battery as a main power sources. In result, it is properly simulated performance and dynamic characteristic of each electric power source. Through this, it is revealed that the simulation is available as a means of predicting power characteristic variation for electric propulsion systems of different class.

본 논문에서는 소형 무인기의 전기추진 시스템에 대한 모델링 및 전력 시뮬레이션에 관하여 기술하였다. 각 전력원 모델링 및 시뮬레이션을 위해 Matlab/Simulink를 사용하였고, 연료전지와 배터리를 주 전력원으로 사용하는 200 W급 전기추진 시스템에 대하여 4시간 30분의 비행 시험결과와 시뮬레이션 한 결과를 비교하였다. 그 결과, 시뮬레이션은 각 전력원의 성능 및 동특성을 적절히 모사하였고, 이를 통해 다른 급의 전기추진 시스템에 대한 전력특성변화를 예측하는 도구로 활용 가능함을 알 수 있었다.

Keywords

References

  1. Bradley, T. H., Moffitt, B., Mavris, D., and Parekh, D. E., "Development and Experimental Characterization of a Fuel Cell Powered Aircraft." Journal of Power Sources, Vol. 171, 2007, pp. 793-801. https://doi.org/10.1016/j.jpowsour.2007.06.215
  2. 권세진, 김태규, "연료전지 무인기," 항공우주학회 매거진, 제 3권, 제 2호, 2009, pp. 65-72.
  3. Crumm, A., "Solid Oxide Fuel Cell Systems," Proceedings of the Fuel Cell Seminar, Honolulu, HI. Nov. 2006.
  4. Wipke, K. B., Cuddy, M. R., and Burch, S. D., "ADVISOR 2.1: A User-Friendly Advanced Powertrain Simulation Using a Combined Backward/Forward Approach," IEEE Transactions on Vehicular Technology, Vol. 48, No. 6, Nov. 1999, pp. 1751-1761. https://doi.org/10.1109/25.806767
  5. 김성욱, 이창호, 김동민, "소형 연료전지 전기비행체 개발," 항공우주학회 춘계학술대회, 2011, pp. 856-859.
  6. Jiang, Z., and Dougal, R. A., "Control Strategies for Active Power Sharing in a Fuel-Cell-Powered Battery-Charging Station," IEEE Transactions on Industry Applications, Vol. 40, May. 2004, pp. 917-924. https://doi.org/10.1109/TIA.2004.827467
  7. Buasri, P., and Salameh, Z. M., "An Electrical Circuit Model for A Proton Exchange Membrane Fuel Cell," IEEE 2006:1-4244-0493-2.
  8. Lee, D. J., and Wang, L., "Dynamic and Steady-State Performance of PEM Fuel Cells under Various Loading Conditions," IEEE 2007: 1-4244-1298-6.
  9. Qingshan, X., Nianchu, W., Ichiyanagi, K., and Yukita, K., "PEM Fuel Cell Modeling and Parameter Influences of Performance Evaluation." DRPT2008, 2008.
  10. Tremblay, O., and Dessaint, L. A., "Experimental Validation of a Battery Dynamic Model for EV Applications," World Electric Vehicle Journal. EVS24, Vol. 3, 2009.
  11. Thounthong, P., and Sethakul, P., "Analysis of Fuel Starvation Phenomenon of a PEM Fuel Cell," IEEE 4th Power Conversion Conference, 2007. https://doi.org/10.1109/PCCON.2007.373048

Cited by

  1. A Study on Optimum Takeoff Time of the Hybrid Electric Powered Systems for a Middle Size UAV vol.40, pp.11, 2012, https://doi.org/10.5139/JKSAS.2012.40.11.940
  2. Flight Test of Hybrid Propulsion System for Electrically Powered UAV vol.17, pp.4, 2013, https://doi.org/10.6108/KSPE.2013.17.4.049
  3. Research Trend and Analysis of Altitude and Endurance for Fuel Cell Unmanned Aerial Vehicles vol.25, pp.4, 2014, https://doi.org/10.7316/KHNES.2014.25.4.393