• Title/Summary/Keyword: solvent annealing

Search Result 71, Processing Time 0.024 seconds

Solution Processed Porous Fe2O3 Thin Films for Solar-Driven Water Splitting

  • Suryawanshi, Mahesh P.;Kim, Seonghyeop;Ghorpade, Uma V.;Suryawanshi, Umesh P.;Jang, Jun Sung;Gang, Myeng Gil;Kim, Jin Hyeok;Moon, Jong Ha
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.631-635
    • /
    • 2017
  • We report facile solution processing of mesoporous hematite (${\alpha}-Fe_2O_3$) thin films for high efficiency solar-driven water splitting. $Fe_2O_3$ thin films were prepared on fluorine doped tin oxide(FTO) conducting substrates by spin coating of a precursor solution followed by annealing at $550^{\circ}C$ for 30 min. in air ambient. Specifically, the precursor solution was prepared by dissolving non-toxic $FeCl_3$ as an Fe source in highly versatile dimethyl sulfoxide(DMSO) as a solvent. The as-deposited and annealed thin films were characterized for their morphological, structural and optical properties using field-emission scanning electron microscopy(FE-SEM), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and UV-Vis absorption spectroscopy. The photoelectrochemical performance of the precursor (${\alpha}-FeOOH$) and annealed (${\alpha}-Fe_2O_3$) films were characterized and it was found that the ${\alpha}-Fe_2O_3$ film exhibited an increased photocurrent density of ${\sim}0.78mA/cm^2$ at 1.23 V vs. RHE, which is about 3.4 times higher than that of the ${\alpha}-FeOOH$ films ($0.23mA/cm^2$ at 1.23 V vs. RHE). The improved performance can be attributed to the improved crystallinity and porosity of ${\alpha}-Fe_2O_3$ thin films after annealing treatment at higher temperatures. Detailed electrical characterization was further carried out to elucidate the enhanced PEC performance of ${\alpha}-Fe_2O_3$ thin films.

Recoil Effects of Neutron-Irradiated Metal Permanganates (중성자조사 금속 과망간산염의 반조효과)

  • Lee, Byung-Hun;Kim, Jung-Gwan
    • Nuclear Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.105-111
    • /
    • 1988
  • The chemical effects resulting from the capture of the thermal neutron by manganese in various crystalline permanganates, that is, potassium permanganate ammonium permangante and barium permanganate, have been investigated. The effect of pH of solvent on the distribution of radioactive manganese chemical species, that is, cationic $^{56}$ Mn, $^{56}$ MnO$_2$ and $^{56}$ MnO$_4$$^{[-10]}$ produced in the permanganates by $^{55}$ Mn(n, r) $^{56}$ Mn reaction was studied by using various adsorbents and ion-exchanger, that is, zeolite A-3, kaolinite, alumina, manganese dioxide and Dowex-50 The distribution of radioactive MnO$_4$$^{[-10]}$ in kaolinite and alumina has higher than that in other adsorbents and ion-exchanger at a representative pH value of 4, 7 and 9, respectively. The yield of radioactive MnO$_4$$^{[-10]}$ is higher at pH 4 End pH 9 than at pH 7. The thermal annealing behavior of recoil manganese atoms produced in the permanganates by $^{55}$ Mn(n, r) $^{56}$ Mn reaction was also studied. The retention of MnO$_4$$^{[-10]}$ in the thermal annealing is increased as annealing temperature increases when it was treated at 10$0^{\circ}C$ and 13$0^{\circ}C$. The recoil effect of permanganates was explained by the hot zone model.

  • PDF

Optimization of Bismuth-Based Inorganic Thin Films for Eco-Friend, Pb-Free Perovskite Solar Cells (친환경 Pb-Free 페로브스카이트 태양전지를 위한 비스무스 기반의 무기 박막 최적화 연구)

  • Seo, Ye Jin;Kang, Dong-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.2
    • /
    • pp.117-121
    • /
    • 2018
  • Perovskite solar cells have received increasing attention in recent years because of their outstanding power conversion efficiency (exceeding 22%). However, they typically contain toxic Pb, which is a limiting factor for industrialization. We focused on preparing Pb-free perovskite films of Ag-Bi-I trivalent compounds. Perovskite thin films with improved optical properties were obtained by applying an anti-solvent (toluene) washing technique during the spin coating of perovskites. In addition, the surface condition of the perovskite film was optimized using a multi-step thermal annealing treatment. Using the optimized process parameters, $AgBi_2I_7$ perovskite films with good absorption and improved planar surface topography (root mean square roughness decreased from 80 to 26 nm) were obtained. This study is expected to open up new possibilities for the development of high performance $AgBi_2I_7$ perovskite solar cells for applications in Pb-free energy conversion devices.

Barium Hexaferrite Thin Films Prepared by the Sol-Gel Method

  • An, Sung-Yong;Lee, Sang-Won;Shim, In-Bo;Yun, Sung-Roe;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.6 no.1
    • /
    • pp.23-26
    • /
    • 2001
  • Nano-crystalline hexaferrite $BaFe_{12}O_{19}$(BaM) thin films have been prepared by the sol-gel method. A solution of Ba-nitrate and Fe-nitrates was dissolved in solvent with the stoichiometric ratio Ba/Fe=1/10. Films were spin-coated onto $SiO_2$Si substrates, dried and then heated in air at various temperatures. In films prepared at a drying temperature $T_d=250^{\circ}C$ and a crystallizing temperature 650${\circ}C$, single-phase BaM was obtained. High coercivities were obtained in these nano-crystalline thin films, 4~5.5 kOe for hexaferrite. Polycrystalline BaM/$SiO_2$/Si(100) thin films were characterized by Rutherford backscattering (RBS), thermogravimetry (TGA), differential thermal analysis (DTA), x-ray diffraction (XRD), and vibrating sample magnetometry (VSM), as well as Fourier transform infrared spectroscopy (FTIR). The perpendicular coercivity $H_{C\bot}$ and in-plane coercivity $H_{CII}$ after annealing at 650${\circ}C$ for 2 hours were 4766 Oe and 4480 Oe, respectively, at room temperature, under a maximum applied field of 10 kOe.

  • PDF

Fabrication of interface-controlled Josephson junctions using Sr$_2$AlTaO$_6$ insulating layers

  • Kim, Jun-Ho;Choi, Chi-Hong;Sung, Gun-Yong
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.165-168
    • /
    • 2000
  • We fabricated ramp-edge Josephson junctions with barriers formed by interface treatments instead of epitaxially grown barrier layers. A low-dielectric Sr$_2$AlTaO$_6$(SAT) layer was used as an ion-milling mask as well as an insulating layer for the ramp-edge junctions. An ion-milled YBa$_2$Cu$_3$O$_{7-x}$ (YBCO)-edge surface was not exposed to solvent through all fabrication procedures. The barriers were produced by structural modification at the edge of the YBCO base electrode using high energy ion-beam treatment prior to deposition of the YBCO counter electrode. We investigated the effects of high energy ion-beam treatment, annealing, and counter electrode deposition temperature on the characteristics of the interface-controlled Josephson junctions. The junction parameters such as T$_c$, I$_c$c, R$_n$ were measured and discussed in relation to the barrier layer depending on the process parameters.

  • PDF

Indium Tin Oxide (ITO) Coatings Fabricated Using Mixed ITO Sols

  • Cheong, Deock-Soo;Yun, Dong-Hun;Park, Sang-Hwan;Kim, Chang-Sam
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.708-712
    • /
    • 2009
  • ITO films were achieved by sintering at $500{\sim}550{^{\circ}C}$. This was possible by inducing a seeding effect on an ITO sol by producing crystalline ITO nanoparticles in situ during heat treatment. Two kinds of ITO sols (named ITO-A and ITO-B) were prepared at 2.0 wt% from indium acetate and tin(IV) chloride in different mixed solvents. The ITO-A sol showed a high degree of crystallinity of ITO without any detectable Sn$O_2$ on XRD at $350{^{\circ}C}$/1 h, but the ITO-B sol showed a small amount of Sn$O_2$ even after annealing at $600{^{\circ}C}$/1 h. The 10 wt% ITO-A//ITO-B showed the sheet resistance of 3600$\Omega$/□, while the ITO-B sol alone showed 5200 $\Omega$/□ by sintering at $550{^{\circ}C}$ for 30 min. Processing parameters were studied by TG/DSC, XRD, SEM, sheet resistance, and visible transmittance.

A Study on the Breakdown Characteristics of Electrodeposited Polyimide Film at High Temperature (전착된 폴리이미드 박막의 고온영역에서 절연파괴 특성에 관한 연구)

  • Yu, Y.B.;Sin, D.K.;Kim, B.J.;Kim, J.S.;Pak, K.S.;Kim, S.K.;Cho, D.H.;Han, S.O.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1498-1501
    • /
    • 1996
  • To evaluate insulating properties of polyimide thin film on high temperature over $100\;^{\circ}C$, polyimide film were prepared by electrophoretic deposition onto metal surface from nonaqueous emulsion. The emulsion is made by adding a solution of the resin to a precipitant, which is an organic liquid compeltely miscible with the solvent of the organic resin solution, but which does not dissolve the resin. The polyimide film obtained by annealing shows good insulation properties of 5.8 MV/cm at elevated temperature and breakdown strength of the film reveals thickness dependence.

  • PDF

Comparison of NMR structures refined under implicit and explicit solvents

  • Jee, Jun-Goo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • Refinements with atomistic molecular dynamics (MD) simulation have contributed to improving the qualities of NMR structures. In most cases, the calculations with atomistic MD simulation for NMR structures employ generalized-Born implicit solvent model (GBIS) to take into accounts solvation effects. Developments in algorithms and computational capacities have ameliorated GBIS to approximate solvation effects that explicit solvents bring about. However, the quantitative comparison of NMR structures in the latest GBIS and explicit solvents is lacking. In this study, we report the direct comparison of NMR structures that atomistic MD simulation coupled with GBIS and water molecules refined. Two model proteins, GB1 and ubiquitin, were recalculated with experimental distance and torsion angle restraints, under a series of simulated annealing time steps. Whereas the root mean square deviations of the resulting structures were apparently similar, AMBER energies, the most favored regions in Ramachandran plot, and MolProbity clash scores witnessed that GBIS-refined structures had the better geometries. The outperformance by GBIS was distinct in the structure calculations with sparse experimental restraints. We show that the superiority stemmed, at least in parts, from the inclusion of all the pairs of non-bonded interactions. The shorter computational times with GBIS than those for explicit solvents makes GBIS a powerful method for improving structural qualities particularly under the conditions that experimental restraints are insufficient. We also propose a method to separate the native-like folds from non-violating diverged structures.

Property Studies of PAN/PVdF Composite Nanofiber Manufactured from Electrospinning (전기방사법으로 제조된 PAN/PVdF 복합나노섬유의 특성연구)

  • Yun, Jung-Hyun;Choi, Dong-You
    • 전자공학회논문지 IE
    • /
    • v.46 no.3
    • /
    • pp.6-11
    • /
    • 2009
  • In this paper, manufactured composite nanofiber by electrospinning that make spinning solvent according to weight of PAN/PVdF. PVdF content of composite nanofiber decreases, diameter of fiber decreased. Result that measure contact angle to confirm hydrophile property of PAN/PVdF composite nanofiber, PVdF content increases, could confirm that contact angle with water increases. After leave filter measurement sample for 25 hours in temperature of $40^{\circ}C$, humidity of 85%, result PAN/PVdF composite nanofiber that estimate efficiency could confirm that display performance of HEPA more than 99.95% and ULPA more than 99.999%. And fiber diameter is small, could confirm that filter performance increases. Tensile strength of bulk of PAN/PVdF composite nanofiber was 5-8MPa, expansion 100-300%. And strength and expansion could know that increase according as PVdF's content increases. Tensile strength was 3-8MPa degree after annealing PAN/PVdF composite nanofiber during 2 hours in 120t. Tensile strength was no change almost by annealing, and expansion could know that decrease.

Fabrications and Properties of VF2-TrFE Films for Nonvolatile Memory Application (비휘발성 메모리 응용을 위한 VF2-TrFE 박막의 제작 및 특성)

  • Jeong, Sang-Hyun;Byun, Jung-Hyun;Kim, Hyun-Jun;Kim, Ji-Hun;Kim, Kwang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.388-388
    • /
    • 2010
  • In this study, Ferroelectric vinylidene fluoride-trifluoroethylene (VF2-TrFE) copolymer films were directly deposited on degenerated Si (n+, $0.002\;{\Omega}{\cdot}cm$) using by spin coating method. A 1~5 wt% diluted solution of purified vinylidene fluoride-trifluoroethylene (VF2:TrFE = 70:30) in a dimethylformamide (DMF) solvent were prepared and deposited on silicon wafers at a spin rate of 2000 ~ 4000 rpm for 2 ~ 30 seconds. After annealing in a vacuum ambient at 100 ~ $200^{\circ}C$ for 60 min, upper aluminum electrodes were deposited by vacuum evaporation for electrical measurement. X-ray diffraction results showed that the VF2-TrFE films on Si substrates had $\beta$-phase of copolymer structures. The capacitance on highly doped Si wafer showed hysteresis behavior like a butterfly shape and this result indicates clearly that the copolymer films have ferroelectric properties. The typical measured remnant polarization ($P_r$) and coercive filed ($E_c$) values were about $5.7\;{\mu}C/cm^2$ and 710 kV/em, respectively, in an applied electric field of ${\pm}$ 1.5 MV/em. The gate leakage current densities measured at room temperature was less than $7{\times}10^{-7}\; A/cm^2$ under a field of 1 MV/cm.

  • PDF