DOI QR코드

DOI QR Code

Optimization of Bismuth-Based Inorganic Thin Films for Eco-Friend, Pb-Free Perovskite Solar Cells

친환경 Pb-Free 페로브스카이트 태양전지를 위한 비스무스 기반의 무기 박막 최적화 연구

  • Seo, Ye Jin (Department of Energy Convergence Engineering, Cheongju University) ;
  • Kang, Dong-Won (Department of Energy Convergence Engineering, Cheongju University)
  • 서예진 (청주대학교 에너지융합학과) ;
  • 강동원 (청주대학교 에너지융합학과)
  • Received : 2017.12.15
  • Accepted : 2018.01.02
  • Published : 2018.02.01

Abstract

Perovskite solar cells have received increasing attention in recent years because of their outstanding power conversion efficiency (exceeding 22%). However, they typically contain toxic Pb, which is a limiting factor for industrialization. We focused on preparing Pb-free perovskite films of Ag-Bi-I trivalent compounds. Perovskite thin films with improved optical properties were obtained by applying an anti-solvent (toluene) washing technique during the spin coating of perovskites. In addition, the surface condition of the perovskite film was optimized using a multi-step thermal annealing treatment. Using the optimized process parameters, $AgBi_2I_7$ perovskite films with good absorption and improved planar surface topography (root mean square roughness decreased from 80 to 26 nm) were obtained. This study is expected to open up new possibilities for the development of high performance $AgBi_2I_7$ perovskite solar cells for applications in Pb-free energy conversion devices.

Keywords

References

  1. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc., 131, 6050 (2009). [DOI: https://doi.org/10.1021/ja809598r]
  2. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel, Nature, 395, 583 (1998). [DOI: https://doi.org/10.1038/26936]
  3. S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E.J.D. Klem, L. Levina, and E. H. Sargent, Nat. Mater., 4, 138 (2005). [DOI: https://doi.org/10.1038/nmat1299]
  4. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science, 338, 643 (2012). [DOI: https://doi.org/10.1126/science.1228604]
  5. J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Gratzel, Nature, 499, 316 (2013). [DOI: https://doi.org/10.1038/nature12340]
  6. A. Babayigit, A. Ethirajan, M. Muller, and B. Conings, Nat. Mater., 15, 247 (2016). [DOI: https://doi.org/10.1038/nmat4572]
  7. N. K Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, and H. J. Snaith, Energy Environ. Sci., 7, 3061 (2014). [DOI: https://doi.org/10.1039/C4EE01076K]
  8. F. Hao, C. C. Stoumpos, D. H. Cao, R.P.H. Chang, and M. G. Kanatzidis, Nat. Photonics, 8, 489 (2014). [DOI: https://doi.org/10.1038/nphoton.2014.82]
  9. Y. Kim, Z. Yang, A. Jain, O. Voznyy, G. H. Kim, M. Liu, L. N. Quan, F.P.G. de Arquer, R. Comin, J. Z. Fan, and E. H. Sargent, Angew. Chem., 55, 9586 (2016). [DOI: https://doi.org/10.1002/anie.201603608]