Browse > Article
http://dx.doi.org/10.4313/JKEM.2018.31.2.117

Optimization of Bismuth-Based Inorganic Thin Films for Eco-Friend, Pb-Free Perovskite Solar Cells  

Seo, Ye Jin (Department of Energy Convergence Engineering, Cheongju University)
Kang, Dong-Won (Department of Energy Convergence Engineering, Cheongju University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.31, no.2, 2018 , pp. 117-121 More about this Journal
Abstract
Perovskite solar cells have received increasing attention in recent years because of their outstanding power conversion efficiency (exceeding 22%). However, they typically contain toxic Pb, which is a limiting factor for industrialization. We focused on preparing Pb-free perovskite films of Ag-Bi-I trivalent compounds. Perovskite thin films with improved optical properties were obtained by applying an anti-solvent (toluene) washing technique during the spin coating of perovskites. In addition, the surface condition of the perovskite film was optimized using a multi-step thermal annealing treatment. Using the optimized process parameters, $AgBi_2I_7$ perovskite films with good absorption and improved planar surface topography (root mean square roughness decreased from 80 to 26 nm) were obtained. This study is expected to open up new possibilities for the development of high performance $AgBi_2I_7$ perovskite solar cells for applications in Pb-free energy conversion devices.
Keywords
Ag-Bi-I compounds; Perovskite; Thin film; Solar cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc., 131, 6050 (2009). [DOI: https://doi.org/10.1021/ja809598r]   DOI
2 U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel, Nature, 395, 583 (1998). [DOI: https://doi.org/10.1038/26936]   DOI
3 S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E.J.D. Klem, L. Levina, and E. H. Sargent, Nat. Mater., 4, 138 (2005). [DOI: https://doi.org/10.1038/nmat1299]   DOI
4 M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science, 338, 643 (2012). [DOI: https://doi.org/10.1126/science.1228604]   DOI
5 J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Gratzel, Nature, 499, 316 (2013). [DOI: https://doi.org/10.1038/nature12340]   DOI
6 A. Babayigit, A. Ethirajan, M. Muller, and B. Conings, Nat. Mater., 15, 247 (2016). [DOI: https://doi.org/10.1038/nmat4572]   DOI
7 N. K Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, and H. J. Snaith, Energy Environ. Sci., 7, 3061 (2014). [DOI: https://doi.org/10.1039/C4EE01076K]   DOI
8 F. Hao, C. C. Stoumpos, D. H. Cao, R.P.H. Chang, and M. G. Kanatzidis, Nat. Photonics, 8, 489 (2014). [DOI: https://doi.org/10.1038/nphoton.2014.82]   DOI
9 Y. Kim, Z. Yang, A. Jain, O. Voznyy, G. H. Kim, M. Liu, L. N. Quan, F.P.G. de Arquer, R. Comin, J. Z. Fan, and E. H. Sargent, Angew. Chem., 55, 9586 (2016). [DOI: https://doi.org/10.1002/anie.201603608]   DOI