• Title/Summary/Keyword: solution in closed-form

Search Result 419, Processing Time 0.024 seconds

Relay Selection Based on Rank-One Decomposition of MSE Matrix in Multi-Relay Networks

  • Bae, Young-Taek;Lee, Jung-Woo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.9-11
    • /
    • 2010
  • Multiple-input multiple-output (MIMO) systems assisted by multi-relays with single antenna are considered. Signal transmission consists of two hops. In the first hop, the source node broadcasts the vector symbols to all relays, then all relays forward the received signals multiplied by each power gain to the destination simultaneously. Unlike the case of full cooperation between relays such as single relay with multiple antennas, in our case there is no closed form solution for optimal relay power gain with respect to minimum mean square error (MMSE). Thus we propose an alternative approach in which we use an approximation of the cost function based on rank-one matrix decomposition. As a cost function, we choose the trace of MSE matrix. We give several simulation results to validate that our proposed method obtains a negligible performance loss compared to optimal solution obtained by exhaustive search.

  • PDF

Effect of the yield criterion on the strain rate and plastic work rate intensity factors in axisymmetric flow

  • Lyamina, Elena A.;Nguyen, Thanh
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.719-729
    • /
    • 2016
  • The main objective of the present paper is to study the effect of the yield criterion on the magnitude of the strain rate and plastic work rate intensity factors in axisymmetric flow of isotropic incompressible rigid perfectly plastic material by means of a problem permitting a closed-form solution. The boundary value problem consisting of the axisymmetric deformation of a plastic tube is solved. The outer surface of the tube contracts. The radius of the inner surface does not change. The material of the tube obeys quite a general yield criterion and its associated flow rule. The maximum friction law is assumed at the inner surface of the tube. Therefore, the velocity field is singular near this surface. In particular, the strain rate and plastic work rate intensity factors are derived from the solution. It is shown that the strain rate intensity factor does not depend on the yield criterion but the plastic work rate intensity factor does.

Joint Energy Efficiency Optimization with Nonlinear Precoding in Multi-cell Broadcast Systems

  • Gui, Xin;Lee, Kyoung-Jae;Jung, Jaehoon;Lee, Inkyu
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.873-883
    • /
    • 2016
  • In this paper, we focus on maximizing weighted sum energy efficiency (EE) for a multi-cell multi-user channel. In order to solve this non-convex problem, we first decompose the original problem into a sequence of parallel subproblems which can optimized separately. For each subproblem, a base station employs dirty paper coding to maximize the EE for users within a cell while regulating interference induced to other cells. Since each subproblem can be transformed to a convex multiple-access channel problem, the proposed method provides a closed-form solution for power allocation. Then, based on the derived optimal covariance matrix for each subproblem, a local optimal solution is obtained to maximize the sum EE. Finally, simulation results show that our algorithm based on non-linear precoding achieves about 20 percent performance gains over the conventional linear precoding method.

A two-step method for the optimum design of trusses with commercially available sections

  • Oral, Suha;Uz, Atilla
    • Structural Engineering and Mechanics
    • /
    • v.5 no.1
    • /
    • pp.59-68
    • /
    • 1997
  • A two-step method is presented for the optimum design of trusses with available sections under stress and Euler buckling constraints. The shape design of the truss is used as a means to convert the discrete solution into a continuous one. In the first step of the method, a continuous solution is obtained by sizing and shape design using an approximate polynomial expression for the buckling coefficients. In the second step, the member sizes obtained are changed to the nearest available sections and the truss is reconfigured by using the exact values for the buckling coefficients. The optimizer used is based on the sequential quadratic programming and the gradients are evaluated in closed form. The method is illustrated by two numerical examples.

An Experimental Analysis on the Stewart Platform-Based 6 Axis Force-Torque Sensor (Stewart Platform 방시그이 6축 힘-토크 센서에 관한 실험적 해석)

  • Han, J.H.;Kang, C.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.78-83
    • /
    • 1997
  • The paper presents the experimental analysis of a Stewart platform-based force-torque senor. The closed-form solution of forward kinematics of the Stewart platform is derived approximately by way of a linearization technique, and the solution is used in the force analysis of the force-torque sensor. An exper- mental studies show that the proposed method including gravity compensation algorithm is valid for Stew- art platform-based force-torque sensors. The performance of the developed force-torque sensor is evaluated in view of accuracy and linearity in measurements.

  • PDF

RELATIVE TWISTED KÄHLER-RICCI FLOWS ON FAMILIES OF COMPACT KÄHLER MANIFOLDS

  • Choi, Young-Jun
    • East Asian mathematical journal
    • /
    • v.37 no.5
    • /
    • pp.577-584
    • /
    • 2021
  • Let p : X → D be a proper surjective holomorphic submersion where X is a Kähler manifold and D is the unit disc in ℂ. Let Ω be a d-closed semi-positive real (1, 1)-form on X. If each Xs := p-1(s) for s ∈ D satisfies $-c_1(X_s)+{\Omega}{\mid}_{X_s}$ is Kähler, then the Kähler-Ricci flow twisted by ${\Omega}{\mid}_{X_s}$ has a long time solution by Cao's theorem. This family of twisted Kähler-Ricci flows induces a relative Kähler form ω(t) on the total space X. In this paper, we prove that the positivity of ω(t) is preserved along the twisted Kähler-Ricci flow.

Shear stresses below the rectangular foundations subjected to biaxial bending

  • Dagdeviren, Ugur
    • Geomechanics and Engineering
    • /
    • v.10 no.2
    • /
    • pp.189-205
    • /
    • 2016
  • Soils are subjected to additional stresses due to the loads transferred by the foundations of the buildings. The distribution of stress in soil has great importance in geotechnical engineering projects such as stress, settlement and liquefaction analyses. The purpose of this study is to examine the shear stresses on horizontal plane below the rectangular foundations subjected to biaxial bending on an elastic soil. In this study, closed-form analytical solutions for shear stresses in x and y directions were obtained from Boussinesq's stress equations. The expressions of analytical solutions were simplified by defining the shear stress influence values ($I_1$, $I_2$, $I_3$), and solution charts were presented for obtaining these values. For some special loading conditions, the expressions for shear stresses in the soil below the corners of a rectangular foundation were also given. In addition, a computer program was developed to calculate the shear stress increment at any point below the rectangular foundations. A numerical example for illustrating the use of the presented solution charts was given and, finally, shear stress isobars were obtained for the same example by a developed computer program. The shear stress expressions obtained in this work can be used to determine monotonic and cyclic behavior of soils below rectangular foundations subjected to biaxial bending.

A Numerical Method for One-dimensional Inverse Heat Conduction Problem Using Laplace Transform (라플라스 변환을 이용한 1차원 열전도의 수치해석)

  • Shin, Woon-Chul;Bae, Sin-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.4
    • /
    • pp.13-19
    • /
    • 2007
  • An numerical method to estimate thermal diffusivity has been developed for one-dimensional unsteady heat conduction problem, when the temperatures are know at two positions in a semi-infinite body. Using the closed form solution which has already derived an explicit solution for the inverse problem for one-dimensional transient heat conduction using Laplace transform technique, we first estimate the surface temperature. The thermal diffusivity can be estimated by using the estimated surface temperature and measured temperatures, which include some uncertainties. The estimated surface heat flux and thermal diffusivity are found to be in good agreement with those of the experimented conditions. This method will be extended to the simultaneous measurement of thermal diffusivity and thermal conductivity.

A Fast Forward Kinematic Analysis of Stewart Platform (스튜어트 플랫폼의 빠른 순기구학 해석)

  • Ha, Hyeon-Pyo;Han, Myeong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.339-352
    • /
    • 2001
  • The inverse kinematics problem of Stewart platform is straightforward, but no closed form solution of the forward kinematic problem has been presented. Since we need the real-time forward kinematic solution in MIMO control and the motion monitoring of the platform, it is important to acquire the 6 DOF displacements of the platform from measured lengths of six cylinders in small sampling period. Newton-Raphson method a simple algorithm and good convergence, but it takes too long calculation time. So we reduce 6 nonlinear kinematic equations to 3 polynomials using Nairs method and 3 polynomials to 2 polynomials. Then Newton-Raphson method is used to solve 3 polynomials and 2 polynomials respectively. We investigate operation counts and performance of three methods which come from the equation reduction and Newton-Raphson method, and choose the best method.

ANALYTIC APPROACH FOR THE STUDY OF AIR AND/OR LIQUID FILLED GEOMEMBRANE TUBE SECTIONS ON A HORIZONTAL

  • Choi, Yoon-Rak
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.3
    • /
    • pp.181-195
    • /
    • 2013
  • This study considers an air and liquid-filled geomembrane tube section resting on a horizontal foundation. All quantities are normalized to obtain geometrically similar solutions in the static equilibrium condition. Analytic solutions are expressed in closed form. The solution for the air or liquid-filled tube section is derived systematically as an extreme case of the air and liquid-filled tube section. The validity of these solutions is confirmed by comparing to previous study, and some results are shown for the characteristic parameters and shapes of air and/or liquid-filled cases. Using the result of present study, one can estimate the shape and characteristic parameters of a tube section without numerical integrations or iterations.