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ABSTRACT. This study considers an air and liquid-filled geomembrane tube section resting on a 
horizontal foundation. All quantities are normalized to obtain geometrically similar solutions in the 
static equilibrium condition. Analytic solutions are expressed in closed form. The solution for the 
air or liquid-filled tube section is derived systematically as an extreme case of the air and liquid-
filled tube section. The validity of these solutions is confirmed by comparing to previous study, 
and some results are shown for the characteristic parameters and shapes of air and/or liquid-filled 
cases. Using the result of present study, one can estimate the shape and characteristic parameters of 
a tube section without numerical integrations or iterations. 

1. INTRODUCTION 

Geomembrane structures are composed of thin flexible sheets, and can be inflated with 
air, liquid, grain, slurry, or sand. Geomembrane structures are widely utilized in various 
applications because they are inexpensive and easy to install and dismantle. These 
structures can be used to store and transport fluids. In the field of civil engineering, 
geomembrane structures are employed for purposes such as increasing the height of existing 
dams or spillways, temporary dykes for flood control, breakwaters in beaches, foundations 
of emergency bridges, and coastal erosion prevention. 

Inflated geomembrane structures are generally tube-shaped, so structural analysis is 
commonly performed about the tube section. Analytic approaches have been focused on the 
analysis of the structures resting on the horizontal foundations. Demiray and Levinson [1] 
formulated the governing equations according to the equilibrium of force and the geometric 
boundary conditions, and obtained the analytic solution expressed in terms of elliptic 
integrals. Wang and Watson [2] studied the shapes of the structures in lightly or heavily 
pressurized conditions. Namias [3] found the approximate solutions, which covered a wider 
range of the low and high pressures than that of Wang and Watson [2]. Plaut and Suherman 
[4] reviewed the analytic and approximate solutions in terms of the pressure at the bottom 
of the tube and at the top. Meanwhile, Plaut and Cotton [5] numerically studied the statics
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and vibration of the tube section of air-filled structures using the shooting method. Antman 
and Schagerl [6] analyzed extensible elastic membranes containing incompressible liquids 
and compressible gases, and inextensible membrane as a limit case of extensible membrane. 
However, the authors neglected the weight of membranes. Recently, Ghavanloo and 
Daneshmand [7] carried out semi-analytic approaches for the air and/or liquid-filled tube 
sections (that is, the solutions were expressed in integral form). Choi [8] derived the 
analytic solution in closed form for an air-filled, heavy membrane tube section on an incline. 

In the present study, an analytic approach is applied to an air and liquid-filled 
geomembrane tube resting on a horizontal foundation. Based on the semi-analytic approach 
by Ghavanloo and Daneshmand [7], the integral terms of their results are evaluated 
analytically. The problem is divided into two parts: liquid-filled and air-filled. Each part is 
solved analytically and then matched to obtain the complete solution. The analytic solution 
for the air or liquid-filled tube is derived systematically using the solution of the air and 
liquid-filled tube. A comparison with a semi-analytic approach is performed, and 
characteristic parameters and shapes are shown for the air and/or liquid-filled tube sections. 

 

FIGURE 1. Cross section of the air and liquid-filled geomembrane tube. 

2. MATHEMATICAL FORMULATION OF THE PROBLEM 

Figure 1 shows the cross section of an air and liquid-filled geomembrane tube resting on 
a rigid horizontal foundation. The geomembrane material is assumed to be inextensible and 
perfectly flexible. Both the friction between the geomembrane tube and the liquid, and that 
between the geomembrane tube and the rigid foundation are neglected. The origin of the 
coordinate system O  is located at the right separation point. X  and Y  are the 
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horizontal and vertical axes, respectively,  is the tangential angle with respect to the 
horizontal, and S  is the arc length from the origin. The contact length is ; the mass per 
unit length is ; the density of the liquid is ; the height of the liquid level is H ; the 
maximum width is W ; the transmural pressure difference in the air-filled part is 0P ; the 
intersection point of the air, liquid, and tube section is C ; and the top point of the tube is 
Q . The analysis can be performed in the right half section due to the geometrical symmetry. 

 

FIGURE 2. Free-body diagram for a differential element. 

From the free-body diagram of Figure 2, the static equilibrium gives 

sing
dS
dT

,                                                      (2.1) 

cosgP
dS
dT ,                                                (2.2) 

where P  is the transmural pressure difference. P  in the air- and liquid-filled parts is 
expressed as 

,
2

,0

0

0

LSSifP

SSifYHgP
P

C

C

                                (2.3) 

where L  is the perimeter of the tube section. 
To simplify the analysis, dimensional quantities are nondimensionalized using L  and 
 as follows: 
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where V  is the sectional area of the tube. In (2.4),  indicates the weight ratio of 
geomembrane structure to the liquid. Using these quantities and (2.3), (2.1) and (2.2) can be 
rewritten as follows: 

0
ds
dt

,   yhp
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dt        Cssif 0 ,                     (2.5a,b) 
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ds
dt

,   cosp
ds
dt      

2
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In (2.5), the effect of the tube weight is neglected in the liquid-filled part because  is 
generally very small. Hence, it can be noted that the tension is constant in this part. 

The geometric relations are 

cos
ds
dx

,   sin
ds
dy

.                                          (2.7a,b) 

The same equations can be found in Ghavanloo and Daneshmand [7]. 
This problem is governed by the system of non-linear differential equations in (2.5)-(2.7). 

The boundary conditions of this problem at points O , C , and Q  are as follows: 

00 satyx ,                                              (2.8) 

Cxx ,   hy ,   C    Cssat ,                               (2.9) 

2
x ,      

2
1sat .                                    (2.10) 

3. ANALYTIC SOLUTIONS 

As can be seen in (2.5) and (2.6), this problem can be broken into two problems: the 
liquid-filled part problem and the air-filled part problem. Therefore, each of the two 
problems may be analyzed independently. After solving the two problems with unknowns 

Cx , C , and Cs  at point C , matching the two solutions at point C  yields the complete 
solution. 

3.1. Solution of the liquid-filled part. This problem is composed of the governing 
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equations (2.5) and (2.7) with the boundary conditions (2.8) and (2.9). From (2.5a), tension 
in this part is constant and denoted as 0tt . Differentiation of (2.5b) with respect to s  
yields an integrable equation as follows: 

0
2

2 sin
tds

d
.                                                      (3.1) 

Integration of the above equation results in 

cos2

0

a
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d
,                                                (3.2) 

where a  is defined as follows: 

1
2
1cos

2
1

0

2

0

2

t
hp

t
pa C .                                     (3.3) 

The relation in (3.3) is provided by the values in (2.5b) at points O  and C . Using (3.2), 
analytic integration can be performed with respect to  (Gradshteyn and Ryzhik [9]). 
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In the above equations, F  and E  are the incomplete elliptic integrals of the first and 
second kind, respectively, which are defined in Gradshteyn and Ryzhik [9], and can be 
evaluated without numerical integrations (Press et al. [10]). 

The sectional area of this part ( lv ) is derived by integrating (2.5b). 

CCl pxhtv 2sin2 0 .                                            (3.7) 
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3.2. Solution of the air-filled part. This problem is composed of the governing equations 
(2.6) and (2.7) with the boundary conditions (2.9) and (2.10). To inflate the tube, the air 
pressure should be p . Elimination of s  from (2.6a) and (2.6b) yields 

cos
cos

0 p
ptt C .                                                   (3.8) 

Using this result and the boundary condition (2.9), equations (2.7a), (2.7b), and (2.6b) can 
be integrated and expressed as functions of  (Gradshteyn and Ryzhik [9]). 
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The sectional area of this part ( av ) is calculated as follows: 
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The last integral term in (3.12) can be evaluated analytically (after some manipulations of 
the integration by parts). The result is then given as follows: 
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3.3. Matching of two solutions. For the liquid-filled part, the application of boundary 
conditions (2.9) to (3.4) and (3.5) results in the following relation. 
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On the other hand, the application of boundary conditions (2.10) to (3.9) and (3.11) results 
in the following relation for the air-filled part. 
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From (3.3), 0t  can be expressed as follows: 

C

hpht
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0 .                                                   (3.16) 

Because 0t  and a  are expressed in terms of the parameters p , h , and C  as can be 
seen in (3.3) and (3.16), elimination of CC xs  from (3.14) and (3.15) yields an equation 
that represents the relation among those parameters. For given values of p  and h , one 
can find C  as the root of this combined equation using various numerical schemes, such 
as the bisection method. The monotonic property of the combined equation to C  
confirms the uniqueness of the solution. The upper bound of h  for a given p  
corresponds to the h  of the fully liquid-filled case, which is described in the next section. 
After determining C , the shape and all characteristic parameters can be determined for the 
given p  and h . 

CC xx ,   
2max xx ,   yymax , 

x
2

,  max2xw ,   ttmax .                      (3.17) 

All solutions solved in this study are geometrically similar solutions, because all 
quantities are normalized by the perimeter of the tube section and the density of the 
contained liquid. 

4. TWO EXTREME CASES: LIQUID-FILLED AND AIR-FILLED 

Using the solution of the air and liquid-filled geomembrane tube, the solution for the 
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liquid or air-filled tube can be derived. 
4.1. Liquid-filled case. C , maxyh , 2/Cx , and 2/1Cs  in the 
solutions of the liquid-filled part, and the tension is constant ( 0t ). In this case, p  is the 
top pressure in the tube section. Noting (3.3), a  is defined as follows, and should be 
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Equation (3.16) is then rewritten as 
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Substitution of (4.1) and (4.2) into (3.14) yields 
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h  is determined as the root of (4.3) for a given p . Therefore, h  is dependent on p . 
This value provides the upper bound of h  in the air and liquid-filled case for the given p . 
After determining h , the shape and characteristic parameters are calculated by (3.4)-(3.6) 
and (3.17). Equation (3.15) is automatically satisfied. These results are identical to those of 
previous studies (Demiray and Levinson [1] and Namias [3]). 

From (3.7), the sectional area is 

phvv l .                                                    (4.4) 

4.2. Air-filled case. This case corresponds to 0C , 0h , 0Cx , and 0Cs  in the 
solutions of the air-filled part. In this case, the liquid density  is meaningless. Thus, new 
nondimensional parameters for the air pressure and tension are introduced as follows: 

g
Ppp 0~ ,   

gL
Ttt~ ,                                         (4.5) 

where 1~p . Using the above definition, (3.15) yields 
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Hence, 0
~t  is determined for a given p~  as follows: 
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Equation (3.14) is automatically satisfied. Using (4.5) and (4.7), the solutions of the air-
filled part (3.8)-(3.11) yield the following results. 
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The characteristic parameters are also derived as follows: 

2
1~~ 2

max
p

t ,                                                     (4.12) 

1~
1

p
,                                                         (4.13) 

1~
1~

tan
1~

2
1~
1~

2
1 1

max p
p

pp
px ,                             (4.14) 

1~
1~1

max p
py .                                                   (4.15) 

These closed-form solutions correspond to those of Choi [8] in the case of a horizontal 
foundation. 

From (3.13), the sectional area is 
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5. NUMERICAL RESULTS AND DISCUSSION 

Figure 3 shows the dependence of C  on the air pressure p  for several liquid levels 
h . To compare the results of present study to those of Ghavanloo and Daneshmand [7], the 
parameter  is assumed hereafter to be 0.0035. 180C  indicates the liquid-filled 
case. C  approaches the value of the perfectly circular shape for the given h  as p  
increases. There is a minimum pressure required to keep a certain liquid level, which 
corresponds to the liquid-filled case. This minimum pressure increases as h  increases. The 
computing burden to find C  using the bisection method was negligibly small. 

 

 
FIGURE 3. c  related to the nondimensional air pressure p . 

To ensure the validity of the analytic solutions of this study, some characteristic 
parameters are compared with those of the semi-analytic approach by Ghavanloo and 
Daneshmand [7]. As shown in Table 1, close agreement is achieved between the two results. 
The solution of the semi-analytic approach contains the integral terms which should be 
computed numerically, while that of present study does not contain any integral terms. 



SOLUTIONS OF AIR AND/OR LIQUID-FILLED 

 

191 

TABLE 1. Some characteristic parameters of the air and liquid-filled tube sections. 

p  h  

 

 

C
  0t  

Present 
study 

Ghavanloo and 
Daneshmand 
[7] 

Present 
study 

Ghavanloo and 
Daneshmand 
[7] 

 Present 
study 

Ghavanloo and 
Daneshmand 
[7] 

0.25 0.10 0.0785 0.0785  1.3252 1.3252  0.0396 0.0396 
0.25 0.15 0.1156 0.1155  1.7585 1.7587  0.0411 0.0411 
0.25 0.175 0.1306 0.1305  1.9810 1.9814  0.0422 0.0422 
0.25 0.20 0.1422 0.1421  2.2148 2.2151  0.0437 0.0437 
0.05 0.10 0.2415 0.2414  1.7821 1.7825  0.0083 0.0083 
0.10 0.10 0.1585 0.1588  1.5111 1.5096  0.0160 0.0160 
0.15 0.10 0.1182 0.1183  1.4101 1.4095  0.0238 0.0238 
0.20 0.10 0.0943 0.0944  1.3575 1.3567  0.0317 0.0317 

Figures 4(a) and 4(b) show the characteristic parameters for 05.0h  and 2.0 , 
respectively. As expected, all values approach those of the circle for the given h  as p  
increases. The approaches to those limit values are slower for larger values of h  because 
gravity tends to flatten more for higher liquid level. The values for the minimum air 
pressure for the given h  (that is, the pressure for maxyh ) correspond to those of the 
liquid-filled case. Figures 5(a) and 5(b) depict the shapes for 05.0h  and 2.0 , 
respectively. The dashed lines in the figures represent liquid levels h . The shapes of the 
air-filled part look like circular arcs because the parameter 0035.0  is very small (that 
is, very light geomembrane structure). 

 
(a) 05.0h                           (b) 2.0h  

FIGURE 4. Characteristic parameters of the air and liquid-filled tube section. 
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  (a) 05.0h                           (b) 2.0h  
FIGURE 5. Shapes of the air and liquid-filled tube section. 

Figures 6 and 7 plot the characteristic parameters and shapes for the liquid-filled case. All 
characteristic parameters approach for the parameters of the perfectly folded tube section as 

0p . Asymptotic values for p  are those of the circle with unit perimeter. 

 

FIGURE 6. Characteristic parameters of the liquid-filled tube section. 
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FIGURE 7. Shapes of the liquid-filled tube section. 

Figures 8 and 9 show the characteristic parameters and shapes for the air-filled case. The 
characteristic features are similar to those of the liquid-filled case. The shapes are a little 
wide and flabby at the bottom section compared to those of the liquid-filled case. 

 

FIGURE 8. Characteristic parameters of the air-filled tube section. 
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FIGURE 9. Shapes of the air-filled tube section. 

6. CONCLUSIONS 

The cross section of an air and liquid-filled geomembrane tube resting on a rigid 
horizontal foundation is analyzed using an analytic approach. Problems are solved 
separately for the air-filled and liquid-filled parts. The solution of the liquid-filled part is 
expressed in terms of elliptic integrals, while the solution of the air-filled part is described 
by trigonometric functions. The matching of two solutions is carried out to obtain the 
complete solution. The solution for the air or liquid-filled tube section is derived 
systematically as an extreme case of the air and liquid-filled tube section. 

Because all solutions in this study are described in the closed form and are 
nondimensionalized, it is possible to determine the shapes and characteristic parameters for 
any size of geomembrane tube section without numerical iterations or integrations required 
in a direct numerical or semi-analytic approach, respectively. In addition to this, the closed-
form solution is more amenable to interpreting physics and parametric study of the problem 
than a direct numerical or semi-analytic solution. 
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