East Asian Math. J. Vol. 37 (2021), No. 5, pp. 577–584 http://dx.doi.org/10.7858/eamj.2021.036

RELATIVE TWISTED KÄHLER-RICCI FLOWS ON FAMILIES OF COMPACT KÄHLER MANIFOLDS

Young-Jun Choi

ABSTRACT. Let $p: X \to \mathbf{D}$ be a proper surjective holomorphic submersion where X is a Kähler manifold and **D** is the unit disc in \mathbb{C} . Let Ω be a dclosed semi-positive real (1, 1)-form on X. If each $X_s := p^{-1}(s)$ for $s \in \mathbf{D}$ satisfies $-c_1(X_s) + \Omega|_{X_s}$ is Kähler, then the Kähler-Ricci flow twisted by $\Omega|_{X_s}$ has a long time solution by Cao's theorem. This family of twisted Kähler-Ricci flows induces a relative Kähler form $\omega(t)$ on the total space X. In this paper, we prove that the positivity of $\omega(t)$ is preserved along the twisted Kähler-Ricci flow.

1. Introduction

Let $p: X \to \mathbf{D}$ be a proper surjective holomorphic submersion from a Kähler manifold X, equipped with a Kähler metric θ , to the unit disc \mathbf{D} in \mathbb{C} . Then every fiber $X_s := p^{-1}(s)$ for $s \in \mathbf{D}$ is a compact Kähler manifold with the Kähler metric $\theta|_{X_s}$. Let Ω be a *d*-closed semi-positive (1, 1)-form on X. Suppose that the Ricci curvature $-\operatorname{Ric}(\theta|_{X_s})$ of $\theta|_{X_s}$ satisfies that

$$\omega_s := -\operatorname{Ric}(\theta|_{X_s}) + \Omega|_{X_s} > 0 \tag{1}$$

on each fiber X_s . Then the twisted Kähler-Ricci flow on X_s is given as follows.

$$\frac{\partial}{\partial t}\omega_s(t) = -\omega_s(t) - \operatorname{Ric}(\omega_s(t)) + \Omega|_{X_s}$$
$$\omega_s(0) = \omega_s.$$

The celebrated theorem due to Cao implies that the above parabolic PDE has a long time solution ([2]). This family of twisted Kähler-Ricci flows induces a flow of relative Kähler metric $\omega(t)$ on X satisfying

$$\omega(t)|_{X_s} = \omega_s(t)$$

for $s \in \mathbf{D}$ and $t \in [0, \infty)$, which is a solution of the *relative twisted Kähler-Ricci* flow. (For the definition, see Section 3.2.) Here a relative Kähler form means a

©2021 The Youngnam Mathematical Society (pISSN 1226-6973, eISSN 2287-2833)

Received July 30, 2021; Accepted September 23, 2021.

²⁰¹⁰ Mathematics Subject Classification. 53E30, 32G05.

Key words and phrases. Kähler-Ricci flow, relative twisted Kähler-Ricci flow, family of compact Kähler manifolds.

This work was supported by a 2-Year Research Grant of Pusan National University.

d-closed real (1, 1)-form on X which is positive-definite on each fiber. Since the (twisted) Kähler-Ricci flow preserves the Kählerness, $\omega(t)|_{X_s}$ is always positive-definite for $t \in [0, \infty)$ on each fiber X_s . However it is not obvious that $\omega(t)$ is positive-definite along the horizontal direction in the total space X. In this paper, we prove the positivity of $\omega(t)$ on the total X provided that the initial relative Kähler form $\omega(0)$ is positive.

Theorem 1.1. If $\omega(0)$ is semi-positive (resp. positive), then $\omega(t)$ is semipositive (resp. positive) for all $t \in (0, \infty)$.

Since Cao's theorem ([2]) also implies that the twisted Kähler Ricci flow $\omega_s(t)$ converges to the twisted Kähler-Einstein metric ρ_s on each fiber X_s satisfying

$$\rho_s = -\operatorname{Ric}(\rho_s) + \Omega|_{X_s},$$

we have the following corollary.

Corollary 1.2 (cf [5]). The relative twisted Kähler-Einstein metric ρ on X is semi-positive.

For the definition of the relative twisted Kähler-Einstein metric, see Section 4.

The positivity of the relative Kähler-Einstein metric is first studied by Schumacher ([7]). He proves that the relative Kähler-Einstein metric on a family of canonically polarized compact Kähler manifolds is positive on the total space. Păun generalizes it to the relative twisted Kähler-Einstein metric ([5]). On the other hand, Berman proves the parabolic version of Schumacher's result ([1]). More precisely, He proves that the positivity of the relative Kähler-Ricci flow is preserved along the flow. The main theorem of this paper is the parabolic version of Păun's result.

2. Preliminaries

Let $p: X^{n+1} \to \mathbf{D}$ is a proper surjective holomorphic submersion from a complex manifold X to the unit disc \mathbf{D} in \mathbb{C} such that every fiber $X_s := p^{-1}(s)$ is a Kähler complex manifold. We call this $p: X \to \mathbf{D}$ a smooth family of compact Kähler manifolds. If we denote the standard coordinate in \mathbf{D} by s, one can take a local coordinate (z^1, \ldots, z^n) of a fixed fiber such that

- (z^1, \ldots, z^n, s) forms a local coordinate of X,
- $p(z^1, \ldots, z^n, s) = s$ in the coordinate (z, s).

We call this an *admissible coordinate of* p.

Throughout this paper, small Greek letters $\alpha, \beta, \dots = 1, \dots, n$ stand for indices on $z = (z^1, \dots, z^n)$ unless otherwise specified. For a properly differentiable function f on X, we denote by

$$f_{\alpha} = \frac{\partial f}{\partial z^{\alpha}}, \quad \text{and} \ f_{\bar{\beta}} = \frac{\partial f}{\partial z^{\bar{\beta}}},$$
 (2)

578

where $z^{\overline{\beta}}$ mean $\overline{z^{\beta}}$. If there is no confusion, we always use the Einstein convention.

2.1. Horizontal lifts and geodesic curvatures

Definition 1. Let $v := \partial/\partial s \in T'\mathbf{D}$ where $T'\mathbf{D}$ stands for the complex tangent space of type (1,0) and let τ be a real (1,1)-form on X which is positive-definite on each fiber X_s .

- 1. A vector field v_{τ} of type (1,0) is called a *horizontal lift* of v if v_{τ} satisfies that
 - (i) $\langle v_{\tau}, W \rangle_{\tau} = 0$ for all $W \in T'X_s$,
 - (ii) $dp(v_{\tau}) = v$.
- 2. The geodesic curvature $c(\tau)$ of τ is defined by the norm of v_{τ} with respect to the sequilinear form $\langle \cdot, \cdot \rangle_{\tau}$ induced by τ , i.e.,

$$c(\tau) = \langle v_{\tau}, v_{\tau} \rangle_{\tau} \,.$$

Remark 1. Let (z^1, \ldots, z^n, s) be an admissible coordinate of p. Then τ is written as

$$\tau = \sqrt{-1} \left(\tau_{s\bar{s}} ds^i \wedge d\bar{s} + \tau_{s\bar{\beta}} ds \wedge dz^{\bar{\beta}} + \tau_{\alpha\bar{s}} dz^{\alpha} \wedge d\bar{s} + \tau_{\alpha\bar{\beta}} dz^{\alpha} \wedge dz^{\bar{\beta}} \right).$$

Since τ is positive-definite on each fiber X_s , the matrix $(\tau_{\alpha\bar{\beta}})$ is invertible. We denote the inverse matrix by $(\tau^{\bar{\beta}\alpha})$. Then the horizontal lift of $\partial/\partial s$ is given as

$$\left(\frac{\partial}{\partial s}\right)_{\tau} = \frac{\partial}{\partial s} - \tau_{s\bar{\beta}}\tau^{\bar{\beta}\alpha}\frac{\partial}{\partial z^{\alpha}}.$$

On the other hand, the geodesic curvature $c(\tau)$ is computed as

$$c(\tau) = \langle v_{\tau}, v_{\tau} \rangle_{\tau} = \tau_{s\bar{s}} - \tau_{s\bar{\beta}} \tau^{\bar{\beta}\alpha} \tau_{\alpha\bar{s}}.$$

It is well known that

$$\frac{\tau^{n+1}}{(n+1)!} = c(\tau) \cdot \frac{\tau^n}{n!} \wedge \sqrt{-1} ds \wedge d\bar{s}.$$
(3)

This says that if $c(\tau) > 0$ (resp. ≥ 0), then τ is a positive (resp. semi-positive) real (1, 1)-form as τ is positive-definite when restricted to X_s .

2.2. Hermitian metrics on the relative canonical line bundle

The relative canonical line bundle $K_{X/\mathbf{D}}$ is defined by

$$K_{X/\mathbf{D}} = K_X \otimes (p^* K_{\mathbf{D}})^{-1}.$$

For a given relative Kähler form τ on X, which is a *d*-closed real (1,1) form, which is positive-definite on each fiber X_s , there exists a hermitiain metric $h_{X/\mathbf{D}}^{\tau}$ on $K_{X/\mathbf{D}}$ as follows:

Y.-J. CHOI

Let (z, s) be an admissible coordinate in X so that $(\tau_{\alpha\overline{\beta}})$ is positive-definite on each fiber X_s . Then $\sum \tau_{\alpha\overline{\beta}}(z, s)dz^{\alpha} \wedge dz^{\overline{\beta}}$ gives a hermitian metric on each fiber X_s . It follows that

$$\left(\det\left(\tau_{\alpha\bar{\beta}}(z,s)_{1\leq\alpha,\beta\leq n}\right)\right)^{-1}\tag{4}$$

gives a hermitian metric on the relative canonical line bundle $K_{X/\mathbf{D}}$, which is denoted by $h_{X/\mathbf{D}}^{\tau}$. The curvature form $\Theta_{\tau} := \Theta_{h_{X/\mathbf{D}}^{\tau}}(K_{X/\mathbf{D}})$ of $h_{X/\mathbf{D}}^{\tau}$ on $K_{X/\mathbf{D}}$ is given by

$$\Theta_{h_{X/\mathbf{D}}^{\tau}}(K_{X/\mathbf{D}}) = dd^{c} \log \det(\tau_{\alpha\bar{\beta}}(z,s)),$$

where d^c is the real operator defined by $d^c = \frac{\sqrt{-1}}{2}(\bar{\partial} - \partial)$, so that $dd^c = \sqrt{-1}\partial\bar{\partial}$. It is obvious that the curvature form also can be written as

$$\Theta_{h_{X/\mathbf{D}}^{\tau}}(K_{X/\mathbf{D}}) = dd^{c} \log \det \left(\tau^{n} \wedge p^{*} dV_{s}\right),$$

where $dV_s := \sqrt{-1}ds \wedge d\bar{s}$ is the Euclidean volume form on **D**. Then it immediately follows from the definition that if τ is a relative Kähler form, then

$$\Theta_{h_{X/\mathbf{D}}^{\tau}}(K_{X/\mathbf{D}})|_{X_s} = -\operatorname{Ric}(\tau|_{X_s}).$$

3. Twisted Kähler-Ricci flow

In this section, we recall the twisted Kähler-Ricci flow on a compact Kähler manifold and define the relative twisted Kähler-Ricci flow on a family of compact Kähler manifolds.

3.1. Twisted Kähler-Ricci flow

Let (X, θ) be a compact Kähler manifold and Ω be a *d*-closed semi-positive (1, 1) form on X such that

$$\widehat{\omega} := -\operatorname{Ric}(\theta) + \Omega > 0.$$

The twisted Kähler-Ricci flow is given as follows:

$$\frac{\partial}{\partial t}\omega(t) = -\omega(t) - \operatorname{Ric}(\omega(t)) + \Omega,$$
$$\omega(0) = \widehat{\omega}.$$

If we write $\omega(t) = \hat{\omega} + dd^c \varphi(t)$, then the above equation is equivalent to the following equation:

$$\frac{\partial}{\partial t}\varphi(t) = \log\frac{(\widehat{\omega} + dd^c\varphi(t))^n}{\widehat{\omega}^n} - \varphi - f,$$

$$\varphi(0) = 0$$

where f is the smooth function on X which is defined by $f = -\log(\widehat{\omega}^n/\theta^n)$. It is easy to see that f satisfies that

$$dd^c f = \widehat{\omega} + \operatorname{Ric}(\widehat{\omega}) - \Omega.$$

Cao proves the long time existence of the (twisted) Kähler-Ricci flow and the convergence to the (twisted) Kähler-Einstein metric ([2]).

Theorem 3.1 (Cao). The twisted Kähler-Ricci flow has a long time solution. Moreover, $\rho = \lim_{t\to\infty} \omega(t)$ satisfies that

$$\operatorname{Ric}(\rho) = -\rho + \Omega.$$

The Kähler form ρ is called a *twisted Kähler-Einstein metric* on X.

3.2. Relative twisted Kähler-Ricci flow

Let $p: X \to \mathbf{D}$ be a smooth family of compact Kähler manifolds over the unit disc \mathbf{D} in \mathbb{C} . Suppose that X is Kähler with a Kähler form θ on X. We denote by $\Theta_{\theta} := \Theta_{h_{X/\mathbf{D}}^{\theta}}(K_{X/\mathbf{D}})$ the curvature of the hermitian metric $h_{X/\mathbf{D}}^{\theta}$ on $K_{X/\mathbf{D}}$ induced by the Kähler form θ . Let Ω be a d-closed semi-positive real (1, 1) form on X and $\hat{\omega} := \Theta_{\theta} + \Omega$. Suppose that $\hat{\omega}$ satisfies

$$\widehat{\omega}|_s = (\Theta_\theta + \Omega)|_{X_s} > 0 \tag{5}$$

on each fiber X_s . Note that Equation (5) is equivalent to Equation (1) as $\Theta|_{X_s} = -\text{Ric}(\theta|_{X_s})$. If we define the smooth function $f \in C^{\infty}(X)$ by

$$f = -\log \frac{\widehat{\omega}^n \wedge p^* dV_s}{\theta^n \wedge p^* dV_s},$$

then it is obvious that

$$dd^c f = -\Theta_{\widehat{\omega}} + \Theta_{\theta}.$$

In particular, $dd^c f|_{X_s} = \operatorname{Ric}(\widehat{\omega}|_{X_s}) + \widehat{\omega}|_{X_s} - \Omega|_{X_s}$. Hence Theorem 3.1 implies that for each fiber X_s , there exists a smooth function $\varphi_s(t)$ satisfying

$$\frac{\partial}{\partial t}\varphi_s(t) = \log \frac{(\widehat{\omega}|_{X_s} + dd^c \varphi_s(t))^n}{(\widehat{\omega}|_{X_s})^n} - \varphi_s - f|_{X_s},$$
$$\varphi_s(0) = 0$$

for all $t \in [0, \infty)$. If we define $\varphi : X \to \mathbb{R}$ by $\varphi(x, t) = \varphi_s(x, t)$ for p(x) = s, then for each t > 0, φ is smooth on the total space X by the standard argument using the implicit function theorem (cf [1, 3]).

Now we define a d-closed real (1,1) form $\omega(t)$ on the total space X by

$$\omega(t) = \Theta_{\theta} + \Omega + dd^c \varphi.$$

Then one can easily see that

$$\begin{split} \frac{\partial}{\partial t}\omega(t) &= \frac{\partial}{\partial t}\left(\Theta_{\theta} + \Omega + dd^{c}\varphi\right) = dd^{c}\left(\frac{\partial\varphi}{\partial t}\right) \\ &= dd^{c}\left(\log\frac{\left(\widehat{\omega} + dd^{c}\varphi(t)\right)^{n} \wedge p^{*}dV_{s}}{\widehat{\omega}^{n} \wedge p^{*}dV_{s}} - \varphi - f\right) \\ &= \Theta_{\omega(t)} - \Theta_{\widehat{\omega}} - dd^{c}\varphi - dd^{c}f \\ &= \Theta_{\omega(t)} - \Theta_{\widehat{\omega}} - dd^{c}\varphi + \Theta_{\widehat{\omega}} - \Theta_{\theta} \\ &= \Theta_{\omega(t)} - \omega(t) + \Omega. \end{split}$$

Y.-J. CHOI

Hence we have the following proposition.

Proposition 3.2. $\omega(t)$ satisfies the following.

$$\frac{\partial}{\partial t}\omega(t) = \Theta_{\omega(t)} - \omega(t) + \Omega,
\omega(0) = \widehat{\omega}.$$
(6)

Remark 2. Equation (6) is called the relative twisted Kähler-Ricci flow since if we restrict $\omega(t)$ on a fiber X_s , then it satisfies that

$$\begin{split} &\frac{\partial}{\partial t} \omega(t)|_{X_s} = -\mathrm{Ric}(\omega(t)|_{X_s}) - \omega(t)|_{X_s} + \Omega|_{X_s}, \\ &\omega(0)|_{X_s} = \widehat{\omega}|_{X_s}. \end{split}$$

4. Proof of the main theorem

In this section, we prove Theorem 1.1 and Corollary 1.2.

Let $p: X \to \mathbf{D}$ be a family of compact Kähler manifolds over the unit disc \mathbf{D} in \mathbb{C} and θ be a Kähler metric on X. Then the geodesic curvature $c(\omega(t))$ of the solution $\omega(t)$ of the relative twisted Kähler-Ricci flow satisfies a parabolic PDE on each fiber. This is a twisted version of the PDE which is first introduced by Berman (Theorem 4.5 in [1]). The proof is essentially the same as the one in [1], so we omit the detailed proof.

Proposition 4.1. $c(\omega(t))$ satisfies the following parabolic PDE on each fiber X_s .

$$\left(\frac{\partial}{\partial t} - \Delta_{\omega(t)}\right)c(\omega(t)) = -c(\omega(t)) + \left|\bar{\partial}v_{\omega(t)}\right|^{2}_{\omega(t)} + \Omega\left(v_{\omega(t)}, \overline{v_{\omega(t)}}\right), \quad (7)$$

where $\Delta_{\omega(t)}$ is the Laplacian with respect to the Kähler metric $\omega(t)$ and $|\cdot|_{\omega(t)}$ is the pointwise norm with respect to $\omega(t)$.

Proof. For the proof, we refer to see the proof of Theorem 4.2 in [3]. The only difference is that we make use of (6) instead of Equation (3.5) in [3]. In particular, (6) implies the following:

$$\left(\log \det(g_{\alpha \overline{\beta}}) \right)_{i\overline{j}} = \left(\frac{\partial}{\partial t} g \right)_{i\overline{j}} + g_{i\overline{j}} - \Omega_{i\overline{j}}$$
$$\alpha, \beta, \dots \dots \qquad \Box$$

where $i, j = s, \alpha, \beta, \ldots$

Remark 3. In ([5]), Păun introduces the relative twisted Kähler-Einstein metric and shows that its geodesic curvature satisfies a certain elliptic PDE. Equation (7) is the parabolic version of the elliptic PDE.

Now we prove the main theorem.

582

Theorem 4.2 (Theorem 1.1). If $\omega(0)$ is semi-positive (resp. positive), then $\omega(t)$ is semi-positive (resp. positive) for all $t \in (0, \infty)$. More precisely, if $\Omega\left(v_{\omega(0)}, \overline{v_{\omega(0)}}\right)$ or $\left|\bar{\partial}v_{\omega(0)}\right|^2_{\omega(0)}$ does not vanish identically on X_s , then $\omega(t)$ is strictly positive on X_s for all $t \in [0, \infty)$.

Proof. Applying the weak parabolic maximum principle to Equation (7), one can conclude that if $c(\omega(0))$ is semi-positive then $c(\omega(t))$ is semi-positive for all $t \in [0, \infty)$ (cf. [4]). Thus $\omega(t)$ is semi-positive on X by (3).

Now suppose that $\Omega\left(v_{\omega(0)}, \overline{v_{\omega(0)}}\right)$ or $\left|\bar{\partial}v_{\omega(0)}\right|^2_{\omega(0)}$ does not vanish identically on a fixed fiber X_s . If we let $h(t) = e^{-t}c(\omega(t))$, then h(t) is non-negative. Moreover, h(t) satisfies that

$$\frac{\partial}{\partial t}h(t) = \Delta_{\omega(t)}h(t) + e^{-t} \left(\left| \bar{\partial}v_{\omega(t)} \right|_{\omega(t)}^2 + \Omega\left(v_{\omega(t)}, \overline{v_{\omega(t)}} \right) \right) \ge \Delta_{\omega(t)}h(t)$$

on $X_s \times [0, \infty)$. The strong maximum principle can be invoked to say that h(t) > 0 for t > 0 or $h(0) \equiv 0$. Suppose that $h(0) \equiv 0$. Then it is easy to see that

$$\frac{\partial}{\partial t}c(\omega(t))\Big|_{t=0} = \Omega\left(v_{\omega(0)}, \overline{v_{\omega(0)}}\right) + \left|\bar{\partial}v_{\omega(0)}\right|^2_{\omega(0)}$$

Sine the right-hand-side is not identically zero, there exists $x_0 \in X_s$ such that $\frac{\partial}{\partial t}c(\omega(t))\Big|_{t=0}(x_0) > 0$. So there exists a $\varepsilon > 0$ such that $c(\omega(t))(x_0) > 0$ for $t \in (0, \varepsilon)$. Again the strong maximum principle yields that $c(\omega(t)) > 0$ for t > 0. This completes the proof.

Remark 4. It is well known that $\bar{\partial}v_{\omega(t)}$ is the harmonic representative of the Kodaira-Spencer class of the family $p: X \to \mathbf{D}$ with respect to $\omega(t)$ ([7]). Hence the family is not locally trivial, then $\bar{\partial}v_{\omega(t)} \neq 0$.

For Corollary 1.2, first we recall that the relative twisted Kähler-Einstein metric. On each fiber X_s , Yau's theorem implies that the following complex Monge-Ampère equation has a unique solution ([6]):

$$\begin{aligned} (\widehat{\omega}|_{X_s} + dd^c \phi_s)^n &= e^{\phi_s} (\theta|_{X_s})^n, \\ \widehat{\omega}|_{X_s} + dd^c \phi_s > 0. \end{aligned}$$

Again the implicit function theorem implies that the function $\phi : X \to \mathbb{R}$ defined by $\phi(x) = \phi_s(x)$ where p(x) = s is smooth on X. The relative twisted Kähler-Einstein metric ρ , which is a *d*-closed real (1, 1) form on X defined by

 $\rho = \widehat{\omega} + dd^c \phi.$

Then one can see that ρ satisfies that

$$\Theta_{\theta} = \rho - \Omega.$$

Again it is proved by Cao that $\varphi(t)$ converges locally uniformly to ϕ as $t \to \infty$ in $C^{\infty}(X)$ -topology ([2]). (See also [1]). It also implies that $\omega(t)$ converges to ρ as $t \to \infty$. Therefore $c(\rho)$ is semi-positive since $c(\omega(t))$ converges to $c(\rho)$ as $t \to \infty$. This completes the proof.

Y.-J. CHOI

References

- Berman, R. J., Relative Kähler-Ricci flows and their quantization, Anal. PDE 6 (2013), 131–180.
- [2] Cao, H.-D., Deformation of Kähler metrics to Kähler Einstein metrics on compact Kähler manifolds, Invent. Math. 81(2) (1985), 359–372.
- [3] Choi, Y.-J., Yoo, S., Fiberwise Kähler-Ricci flows on families of bounded strongly pseudoconvex domains, arXiv:2005.12645.
- [4] Chow, B., Lu, P., Ni, L., Hamilton's Ricci flow, Graduate Studies in Mathematics, 77. American Mathematical Society, Providence, RI; Science Press Beijing, New York, 2006. xxxvi+608 pp
- [5] Păun, M., Relative adjoint transcendental classes and Albanese map of compact Kähler manifolds with nef Ricci curvature, Higher Dimensional Algebraic Geometry: In honour of Professor Yujiro Kawamata's sixtieth birthday. Mathematical Society of Japan, 2017.
- [6] Yau, S.-T., On the Ricci curvature of a compact Kähler Manifold and the complex Monge-Ampere equation I, Comm. Pure Appl. Math. 31 (1978), 339–411.
- [7] Schumacher, G., Positivity of relative canonical bundles and applications, Invent. Math. 190 (2012), no. 1, 1–56.

Young-Jun Choi

DEPARTMENT OF MATHEMATICS, PUSAN NATIONAL UNIVERSITY, 2, BUSANDAEHAK-RO 63BEON-GIL, GEUMJEONG-GU, BUSAN 46241, REPUBLIC OF KOREA

E-mail address: youngjun.choi@pusan.ac.kr