• Title/Summary/Keyword: soluble protein expression

Search Result 258, Processing Time 0.027 seconds

Expression of Recombinant Human Growth Hormone in a Soluble Form in Escherichia coli by Slowing Down the Protein Synthesis Rate

  • Koo, Tai-Young;Park, Tai-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.579-585
    • /
    • 2007
  • Formation of inclusion bodies is usually observed when foreign proteins are overexpressed in E. coli. The formation of inclusion bodies might be prevented by lowering the rate of protein synthesis, and appropriate regulation of the protein expression rate may lead to the soluble expression. In this study, human growth hormone (rhGH) was expressed in a soluble form by slowing down the protein synthesis rate, which was controlled in the transcriptional and translational levels. The transcriptional level was controlled by the regulation of the amount of RNA polymerase specific to the promoter in front of the rhGH gene. For lowering the rate of translation, the T7 transcription terminator-deleted vector was used to synthesize the longer mRNA of the target gene because the longer mRNA is expected to reduce the availability of tree ribosomes. In both methods, the percentage of soluble expression increased when the expression rate slowed down, and more than 93% of rhGH expressed was a soluble form in the T7 transcription terminator-deleted expression system.

The Effect of Growth Condition on a Soluble Expression of Anti-EGFRvIII Single-chain Antibody in Escherichia coli NiCo21(DE3)

  • Dewi, Kartika Sari;Utami, Ratna Annisa;Hariyatun, Hariyatun;Pratiwi, Riyona Desvy;Agustiyanti, Dian Fitria;Fuad, Asrul Muhamad
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.2
    • /
    • pp.148-156
    • /
    • 2021
  • Single-chain antibodies against epidermal growth factor receptor variant III (EGFRvIII) are potentially promising agents for developing antibody-based cancer treatment strategies. We described in our previous study the successful expression of an anti-EGFRvIII scFv antibody in Escherichia coli. However, we could also observe the formation of insoluble aggregates in the periplasmic space, limiting the production yield of the active product. In the present study, we investigated the mechanisms by which growth conditions could affect the expression of the soluble anti-EGFRvIII scFv antibody in small-scale E. coli NiCo21(DE3) cultures, attempting to maximize production. The secreted scFv molecules were purified using Ni-NTA magnetic beads and protein characterization was performed using SDS-PAGE and western blot analyses. We used the ImageJ software for protein quantification and determined the antigen-binding activity of the scFv antibody against the EGFRvIII protein. Our results showed that the highest percentage of soluble scFv expression could be achieved under culture conditions that combined low IPTG concentration (0.1 mM), low growth temperature (18℃), and large culture dish surface area. We found moderate-yield soluble scFv production in the culture medium after lactose-mediated induction, which was also beneficial for downstream protein processing. These findings were confirmed by conducting western blot analysis, indicating that the soluble, approximately 30-kDa scFv molecule was localized in the periplasm and the extracellular space. Moreover, the antigen-binding assay confirmed the scFv affinity against the EGFRvIII antigen. In conclusion, our study reveals that low-speed protein expression is preferable to obtain more soluble anti-EGFRvIII scFv protein in an E. coli expression system.

Soluble Expression of Human Angiostatin and Endostatin by Maltose Binding Protein (MBP) Fusion in E. coli (Maltose Binding Protein 융합단백질에 의한 인간유래의 앤지오스타틴과 앤도스타틴의 대장균에서 수용성 단백질발현)

  • Paek, Seon-Yeol;Choi, Shin-Geon
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.59-63
    • /
    • 2008
  • Rapid production of therapeutic proteins such as angiostatin and endostatin angiogenic inhibititors has been highly demanded for cancer treatment. In this regard, recombinant human angiostatin and endostatin were successfully expressed as soluble forms by maltose binding protein (MBP)-mediated fusion expression in Escherichia coli. PCR amplified, angiostatin and endostatin genes from human placenta cDNA library were inserted into an expression vector pMAL-c2e to construct prokaryotic expression vectors, pMAL-c2e/AS and pMAL-c2e/ES, respectively. Recombinant angiostatin and endostatin were efficiently expressed in E. coli origami (DE3) after IPTG induction and protein expression were confirmed by SDS-PAGE analyses. The expressed recombinant proteins were purified near homogenity using an amylose affinty column chromatography. In contrast that previous E. coli expressions were all insoluble, our results first time demonstrated that MBP fused human angiostatin and endostatin were soluble in E. coli.

  • PDF

Soluble expression and purification of synthetic human bone morphogenetic protein-2 in Escherichia coli

  • Ihm, Hyo-Jin;Yang, Seung-Ju;Huh, Jae-Wan;Choi, Soo-Young;Cho, Sung-Woo
    • BMB Reports
    • /
    • v.41 no.5
    • /
    • pp.404-407
    • /
    • 2008
  • A 345-bp gene that encodes human bone morphogenetic protein-2 (hBMP-2) has been synthesized. The codon usage of the resulting gene was modified to include those triplets that are utilized in highly expressed Escherichia coli genes. The hBMP-2 gene was efficiently expressed in E. coli as a soluble and active protein. Since the recombinant hBMP-2 was readily solublized, no further solublization steps were required throughout purification. No additional tagging residues were introduced into the synthetic hBMP-2 gene product. The developed synthetic gene is a promising approach for scaling-up the soluble expression of hBMP-2.

Soluble Expression and Purification of Human Tissue-type Plasminogen Activator Protease Domain

  • Lee, Hak-Joo;Im, Ha-Na
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2607-2612
    • /
    • 2010
  • Human tissue-type plasminogen activator (tPA) is a valuable thrombolytic agent used to successfully treat acute myocardial infarction, thromboembolic stroke, peripheral arterial occlusion, and venous thromboembolism. Recombinant tPA is accumulated as an inactive form in inclusion bodies of E. coli and is refolded in vitro, which is accompanied by extensive aggregation. In the present study, a tPA protease domain was expressed in an active soluble form in the cytosol of E. coli Rosetta-gami cells, which allowed disulfide bond formation and supplied the tRNA molecules required for six rarely used codons in E. coli. This strategy increased the amount of soluble protease domain protein and avoided the cumbersome refolding process. The purified protease domain not only degraded tPA substrate peptides but also formed a covalently bound complex with plasminogen activator inhibitor-1, as does full-length tPA. Soluble expression and purification of tPA domains may aid in functional analyses of this multi-domain protein, which has been implicated in many physiological and pathological processes.

The Soluble Expression of the Human Renin Binding Protein Using Fusion Partners: A Comparison of ubquitin, Thioredoxin, Maltose Binding Protein-and NusA

  • Lee, Chung;Lee, Sun-Gu;Saori Takahashi;Kim, Byung-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.89-93
    • /
    • 2003
  • human renin binding protein (hRnBp), showing N-acetylglucosamine-2-epimerase activity, was over-expressed in E. coli, but was mainly present as an inclusion body. To improve its solubility and activity, ubiquitin (Ub), thioredoxin (Trx), maltose binding protein (MBP) and NusA, were used as fusion partners. The comparative solubilities of the fusion proteins were, from most to least soluble: NusA, MBP, Trx, Ub. Only the MBP fusion did not significantly reduce the activity of hRnBp, but enhanced the stability. The Origami (DE3), permitting a more oxidative environment for the cytoplasm in E. coli; helped to increase its functional activity.

Modulation of the Tendency Towards Inclusion Body Formation of Recombinant Protein by the Addition of Glucose in the araBAD Promoter System of Escherichia coli

  • Lee, You-Jin;Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1898-1903
    • /
    • 2007
  • We attempted to modulate the overall protein expression rate through the addition of a repressor against the araBAD promoter system of Escherichia coli, in which glucose was used as a repressor. Therefore, 0.5% L-arabinose was initially contained as an inducer in culture medium, and either 2% glucose or 2% glycerol was used as a carbon source, and it was found that the expression of recombinant interferon-${\alpha}$ could be observed at the beginning of the batch culture when glycerol was used as a carbon source. However, when glucose was used, the initiation of recombinant interferon-${\alpha}$ expression was delayed compared with that when glycerol was used. Furthermore, when the addition of 0.5% glucose was carried out once or twice after 0.5% L-arabinose induction during DO-stat fed-batch culture, the distributions of soluble and insoluble recombinant interferon-${\alpha}$ were modulated. When glucose was not added after the induction of L-arabinose, all of the expressed recombinant interferon-${\alpha}$ formed an inclusion body during the later half of culturing. However, when glucose was added after induction, the expressed recombinant interferon-${\alpha}$ did not all form an inclusion body, and about half of the total recombinant interferon-${\alpha}$ was expressed in a soluble form. It was deduced that the addition of glucose after the induction of L-arabinose might lower the cAMP level, and thus, CAP (catabolite activator protein) might not be activated. The transcription rate of recombinant interferon-${\alpha}$ in the araBAD promoter system might be delayed by the partial repression. This inhibition of the transcription rate probably resulted in more soluble interferon-${\alpha}$ expression caused by the reduction of the protein synthesis rate.

Expression and phosphorylation analysis of soluble proteins and membrane-localised receptor-like kinases from Arabidopsis thaliana in Escherichia coli

  • Oh, Eun-Seok;Eva, Foyjunnaher;Kim, Sang-Yun;Oh, Man-Ho
    • Journal of Plant Biotechnology
    • /
    • v.45 no.4
    • /
    • pp.315-321
    • /
    • 2018
  • Molecular and functional characterization of proteins and their levels is of great interest in understanding the mechanism of diverse cellular processes. In this study, we report on the convenient Escherichia coli-based protein expression system that allows recombinant of soluble proteins expression and cytosolic domain of membrane-localised kinases, followed by the detection of autophosphorylation activity in protein kinases. This approach is applied to regulatory proteins of Arabidopsis thaliana, including 14-3-3, calmodulin, calcium-dependent protein kinase, TERMINAL FLOWER 1(TFL1), FLOWERING LOCUS T (FT), receptor-like cytoplasmic kinase and cytoplasmic domain of leucine-rich repeat-receptor like kinase proteins. Our Western blot analysis which uses phospho-specific antibodies showed that five putative LRR-RLKs and two putative RLCKs have autophosphorylation activity in vitro on threonine and/or tyrosine residue(s), suggesting their potential role in signal transduction pathways. Our findings were also discussed in the broader context of recombinant expression and biochemical analysis of soluble and membrane-localised receptor kinases in microbial systems.

Soluble fraction from silk mat induced bone morphogenic protein in RAW264.7 cells

  • Kim, Seong-Gon;Jo, You-Young;Kweon, HaeYong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.41 no.2
    • /
    • pp.51-55
    • /
    • 2020
  • The objective of this study was to evaluate the changes in gene expression after incubation of cells with soluble fraction from different silk mat layers. A silk cocoon from Bombyx mori was separated into 4 layers of equal thickness. The layers were numbered from 1 to 4 (from the inner to outer layer). Each silk mat was placed into normal saline and collected soluble fraction. They were administered to RAW264.7 cells, and changes in the expression of genes were evaluated by cDNA microarray analysis. Layer 1 and 4 groups showed significantly higher expression of BMP-2 at 8 h after administration of soluble fraction (P < 0.05). Runx2 expression was significantly higher in Layer 4 group at 8h (P < 0.05). The silk mat from the innermost and outermost portion of the silkworm cocoon showed a significant change in the expression of genes that are associated with osteoinduction such as BMP-2 and runx2.

Optimization of Expression Conditions for Soluble Protein by Using a Robotic System of Multi-culture Vessels

  • Ahn, Woo-Sung;Ahn, Ji-Young;Jung, Chan-Hun;Hwang, Kwang-Yeon;Kim, Eunice Eun-Kyeong;Kim, Joon;Im, Ha-Na;Kim, Jin-Oh;Yu, Myeong-Hee;Lee, Cheol-Ju
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1868-1874
    • /
    • 2007
  • We have developed a robotic system for an automated parallel cell cultivation process that enables screening of induction parameters for the soluble expression of recombinant protein. The system is designed for parallelized and simultaneous cultivation of up to 24 different types of cells or a single type of cell at 24 different conditions. Twenty-four culture vessels of about 200 ml are arranged in four columns${\times}$six rows. The system is equipped with four independent thermostated waterbaths, each of which accommodates six culture vessels. A two-channel liquid handler is attached in order to distribute medium from the reservoir to the culture vessels, to transfer seed or other reagents, and to take an aliquot from the growing cells. Cells in each vessel are agitated and aerated by sparging filtered air. We tested the system by growing Escherichia coli BL21(DE3) cells harboring a plasmid for a model protein, and used it in optimizing protein expression conditions by varying the induction temperature and the inducer concentration. The results revealed the usefulness of our custom-made cell cultivation robot in screening optimal conditions for the expression of soluble proteins.