DOI QR코드

DOI QR Code

Expression and phosphorylation analysis of soluble proteins and membrane-localised receptor-like kinases from Arabidopsis thaliana in Escherichia coli

  • Oh, Eun-Seok (Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University) ;
  • Eva, Foyjunnaher (Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University) ;
  • Kim, Sang-Yun (Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University) ;
  • Oh, Man-Ho (Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University)
  • 투고 : 2018.12.07
  • 심사 : 2018.12.13
  • 발행 : 2018.12.31

초록

Molecular and functional characterization of proteins and their levels is of great interest in understanding the mechanism of diverse cellular processes. In this study, we report on the convenient Escherichia coli-based protein expression system that allows recombinant of soluble proteins expression and cytosolic domain of membrane-localised kinases, followed by the detection of autophosphorylation activity in protein kinases. This approach is applied to regulatory proteins of Arabidopsis thaliana, including 14-3-3, calmodulin, calcium-dependent protein kinase, TERMINAL FLOWER 1(TFL1), FLOWERING LOCUS T (FT), receptor-like cytoplasmic kinase and cytoplasmic domain of leucine-rich repeat-receptor like kinase proteins. Our Western blot analysis which uses phospho-specific antibodies showed that five putative LRR-RLKs and two putative RLCKs have autophosphorylation activity in vitro on threonine and/or tyrosine residue(s), suggesting their potential role in signal transduction pathways. Our findings were also discussed in the broader context of recombinant expression and biochemical analysis of soluble and membrane-localised receptor kinases in microbial systems.

키워드

참고문헌

  1. Antoln-Llovera M, Ried MK, Binder A, Parniske M (2012) Receptor kinase signaling pathways in plant-microbe interactions. Annu. Rev. Phytopathol 50:451-473 https://doi.org/10.1146/annurev-phyto-081211-173002
  2. Babu YS, Bugg CE, Cook,WJ. (1988) Structure of calmodulin refined at 2.2 A resolution. Journal of molecular biology 204:191-204 https://doi.org/10.1016/0022-2836(88)90608-0
  3. Becraft PW. (2002) Receptor kinase signaling in plant development. Annu. Rev. Cell Dev. Biol 18:163-192 https://doi.org/10.1146/annurev.cellbio.18.012502.083431
  4. Bentem SF, Hirt H. (2009) Protein tyrosine phosphorylation in plants: more abundant than expected?. Trends in Plant Science 14:71-76
  5. Chae WB, Park Y-J, Lee KS, Nou I-S, Oh M-H (2016) Plant receptor kinases bind and phosphorylate 14-3-3 proteins. Genes and Genomics 38:1111-1119 https://doi.org/10.1007/s13258-016-0468-5
  6. Cheng SH, Willmann MR, Chen HC, Sheen J (2002) Calcium signaling through protein kinases. The Arabidopsis calciumdependent protein kinase gene family. Plant physiology 129:469-485 https://doi.org/10.1104/pp.005645
  7. Couto D, Zipfel C (2016) Regulation of pattern recognition receptor signalling in plants. Nature Reviews Immunology 16:537-552 https://doi.org/10.1038/nri.2016.77
  8. DeFalco TA, Bender KW, Snedden WA (2010) Breaking the code:Ca2+ sensors in plant signalling. Biochemical Journal 425:27-40 https://doi.org/10.1042/BJ20091147
  9. De Lorenzo L, Merchan F, Laporte P, Thompson R, Clarke J, Sousa C, Crespi, M (2009) A novel plant leucine-rich repeat receptor kinase regulates the response of Medicago truncatula roots to salt stress. Plant Cell 21:668-680 https://doi.org/10.1105/tpc.108.059576
  10. Fu H, Subramanian RR, Masters SC (2000). 14-3-3 proteins:structure, function, and regulation. Annual review of pharmacology and toxicology 40:617-647 https://doi.org/10.1146/annurev.pharmtox.40.1.617
  11. Hanzawa Y, Money T, Bradley D (2005) A single amino acid converts a repressor to an activator of flowering. Proceedings of the National Academy of Sciences 102:7748-7753 https://doi.org/10.1073/pnas.0500932102
  12. Hwang SG, Kim DS, Jang CS (2011) Comparative analysis of evolutionary dynamics of genes encoding leucine-rich repeat receptor-like kinase between rice and Arabidopsis. Genetica 139:1023-1032 https://doi.org/10.1007/s10709-011-9604-y
  13. Rameneni JJ, Lee Y, Dhandapani V, Yu X, Choi SR, Oh MH, Lim YP (2015) Genomic and post-translational modification analysis of Leucine-Rich-Repeat Receptor-Like Kinases in Brassica rapa. PLoS ONE DOI:10.1371/journal.pone.0142255
  14. Jurca ME, Bottka S, Feher A (2008) Characterization of a family of Arabidopsis receptor-like cytoplasmic kinases (RLCK class VI). Plant cell reports 27:739-748 https://doi.org/10.1007/s00299-007-0494-5
  15. Johnson LN, Barford D. (1993) The effects of phosphorylation on the structure and function of proteins. Annu. Rev. Bioph. Biom 22:199-232 https://doi.org/10.1146/annurev.bb.22.060193.001215
  16. Kobe B, Deisenhofer J. (1994) The leucine-rich repeat: a versatile binding motif. Trends in Biochemical Sciences 19:415-421 https://doi.org/10.1016/0968-0004(94)90090-6
  17. Lindberg RA, Quinn AM, Hunter T. (1992) Dual-specificity protein kinases: will any hydroxyl do?. Trends in Biochemical Sciences 17:114-119 https://doi.org/10.1016/0968-0004(92)90248-8
  18. Lin W, Li B, Lu D, Chen S, Zhu N, He P, Shan L. (2014) Tyrosine phosphorylation of protein kinase complex BAK1/BIK1 mediates Arabidopsis innate immunity. Proceedings of the National Academy of Sciences 111:3632-3637 https://doi.org/10.1073/pnas.1318817111
  19. Lu D, Wu S, Gao X, Zhang Y, Shan L, He P. (2010) A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proceedings of the National Academy of Sciences 107:496-501 https://doi.org/10.1073/pnas.0909705107
  20. Macho AP, Schwessinger B, Ntoukakis V, Brutus A, Segonzac C, Roy S, Kadota Y, Oh MH, Sklenar J, Derbyshire P, Lozano-Duran R, Malinovsky FG, Monaghan J, Menke FL, Huber SC, He SY, Zipfel C (2014) A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation. Science 343:1509-1512 https://doi.org/10.1126/science.1248849
  21. Matsuoka D, Furuya T, Iwasaki T, Nanmori T. (2018) Identification of tyrosine autophosphorylation sites of Arabidopsis MEKK 1 and their involvement in the regulation of kinase activity. FEBS letters 592:3327-3334 https://doi.org/10.1002/1873-3468.13242
  22. Nemoto K, Ramadan A, Arimura GI, Imai K, Tomii K, Shinozaki K, Sawasaki T (2017) Tyrosine phosphorylation of the GARU E3 ubiquitin ligase promotes gibberellin signalling by preventing GID1 degradation. Nature Communications 8:1004 https://doi.org/10.1038/s41467-017-01005-5
  23. Oh MH, Wu X, Kim HS, Harper JF, Zielinski RE, Clouse SD, Huber SC (2012) CDPKs are dual-specificity protein kinases and tyrosine autophosphorylation attenuates kinase activity. FEBS letters 586:4070-4075 https://doi.org/10.1016/j.febslet.2012.09.040
  24. Oh M-H, Ray WK, Huber SC, Asara JM, Gage DA, Clouse SD. (2000) Recombinant brassinosteroid insensitive 1 receptor-like kinase autophosphorylates on serine and threonine residues and phosphorylates a conserved peptide motif in vitro. Plant Physiol 124:751-766 https://doi.org/10.1104/pp.124.2.751
  25. Oh MH, Wang X, Kota U, Goshe MB, Clouse SD, Huber SC. (2009) Tyrosine phosphorylation of the BRI1 receptor kinase emerges as a component of brassinosteroid signaling in Arabidopsis. Proceedings of the National Academy of Sciences 106:658-663 https://doi.org/10.1073/pnas.0810249106
  26. Oh E-S, Lee Y, Chae W, Rameneni J, Park Y-S, Lim Y, Oh M-H. (2018) Biochemical analysis of the role of Leucine-Rich Repeat Receptor-Like kinases and the carboxy-terminus of receptor kinases in regulating kinase activity in Arabidopsis thaliana and Brassica oleracea. Molecules doi: 10.3390/molecules23010236
  27. Park, Y.-L., Yang, H.-S., Oh, M.-H. Tyrosine phosphorylation as signaling component for plant improvement. Journal of Plant Biotechnology 2015, 42:277-283 https://doi.org/10.5010/JPB.2015.42.4.277
  28. Pnueli L, Gutfinger T, Hareven D, Ben-Naim O, Ron N, Adir N, Lifschitz E (2001) Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. Plant Cell 13:2687-2702 https://doi.org/10.1105/tpc.13.12.2687
  29. Reiland S, Messerli G, Baerenfaller K, Gerrits B, Endler A, Grossmann J, Gruissem W, Baginsky S (2009) Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol 150:889-903 https://doi.org/10.1104/pp.109.138677
  30. Rosano G L, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in microbiology doi: 10.3389/fmicb.2014.00172
  31. Rudrabhatla P, Reddy, MM, Rajasekharan R (2006) Genome-wide analysis and experimentation of plant serine/threonine/tyrosine-specific protein kinases. Plant Molecular Biology 60:293-319 https://doi.org/10.1007/s11103-005-4109-7
  32. Saha S, Paul A, Herring L, Dutta A, Bhattacharya A, Samaddar S, Goshe MB, DasGupta, M (2016) Gatekeeper Tyrosine phosphorylation of SYMRK is essential for synchronising the epidermal and cortical responses in root nodule symbiosis. Plant Physiology 171:71-81 https://doi.org/10.1104/pp.15.01962
  33. Schoentgen, F, Saccoccio F, Jolles J, Bernier I, Jolles P (1987) Complete amino acid sequence of a basic 21-kDa protein from bovine brain cytosol. European Journal of Biochemistry 166:333-338 https://doi.org/10.1111/j.1432-1033.1987.tb13519.x
  34. Shiu SH, Bleecker AB (2003) Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiology 132: 530-543 https://doi.org/10.1104/pp.103.021964
  35. Shao F, Golstein C, Ade J, Stoutemyer M, Dixon JE, Innes RW (2003) Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science 301:1230-1233 https://doi.org/10.1126/science.1085671
  36. Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, Li, WH (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. The Plant Cell 16:1220-1234 https://doi.org/10.1105/tpc.020834
  37. Sugiyama N, Nakagami H, Mochida K, Daudi A, Tomita M, Shirasu K, Ishihama Y (2008) Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Mol Syst Biol 4:193
  38. Swatek KN, Wilson RS, Ahsan N, Tritz RL, Thelen JJ (2014) Multisite phosphorylation of 14-3-3 proteins by calciumdependent protein kinases. Biochemical Journal 459:15-25 https://doi.org/10.1042/BJ20130035
  39. Tang W, Kim TW, Oses-Prieto JA, Sun Y, Deng Z, Zhu S, Wang R, Burlingame AL, Wang ZY (2008) BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321:557-560 https://doi.org/10.1126/science.1156973
  40. Tor M, Lotze MT, Holton N (2009) Receptor-mediated signalling in plants: Molecular patterns and programmes. J Exp Bot 60:3645-3654 https://doi.org/10.1093/jxb/erp233
  41. Torii S, Kusakabe M, Yamamoto T, Maekawa M, Nishida E. (2004) SEF is a spatial regulator for Ras/MAP kinase signaling. Dev Cell 7:33-44 https://doi.org/10.1016/j.devcel.2004.05.019
  42. Virdi AS, Singh S, Singh P (2015) Abiotic stress responses in plants: roles of calmodulin-regulated proteins. Frontiers in Plant Science 6:809
  43. Wang X, Li X, Meisenhelder J, Hunter T, Yoshida S, Asami T, Chory J (2008) Autoregulation and homodimerization are involved in the activation of the plant steroid receptor BRI1. Developmental Cell 8:855-865
  44. Wang X, Goshe MB, Soderblom EJ, Phinney BS, Kuchar JA, Li J, Asami T, Yoshida S, Huber, SC, Clouse SD. (2005) Identification and functional analysis of in vivo phosphorylation sites of the Arabidopsis BRASSINOSTEROID-INSENSITIVE1 receptor kinase. The Plant Cell 17:1685-1703 https://doi.org/10.1105/tpc.105.031393
  45. Wickland DP, Hanzawa Y. (2015) The FLOWERING LOCUS T/TERMINAL FLOWER 1 gene family: functional evolution and molecular mechanisms. Molecular Plant 8:983-997 https://doi.org/10.1016/j.molp.2015.01.007
  46. Zhang J, Li W, Xiang T, Liu Z, Laluk K, Ding X, Zou Y, Gao M, Zhang X, Chen S, Mengiste T, Zhang Y, Zhou JM (2010) Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe 7:290-301 https://doi.org/10.1016/j.chom.2010.03.007
  47. Yaffe MB, Smerdon SJ (2001) PhosphoSerine/threonine binding domains: you can’t pSERious? Structure 9: R33-R38 https://doi.org/10.1016/S0969-2126(01)00580-9