Browse > Article

Expression of Recombinant Human Growth Hormone in a Soluble Form in Escherichia coli by Slowing Down the Protein Synthesis Rate  

Koo, Tai-Young (School of Chemical and Biological Engineering, Seoul National University)
Park, Tai-Hyun (School of Chemical and Biological Engineering, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.4, 2007 , pp. 579-585 More about this Journal
Abstract
Formation of inclusion bodies is usually observed when foreign proteins are overexpressed in E. coli. The formation of inclusion bodies might be prevented by lowering the rate of protein synthesis, and appropriate regulation of the protein expression rate may lead to the soluble expression. In this study, human growth hormone (rhGH) was expressed in a soluble form by slowing down the protein synthesis rate, which was controlled in the transcriptional and translational levels. The transcriptional level was controlled by the regulation of the amount of RNA polymerase specific to the promoter in front of the rhGH gene. For lowering the rate of translation, the T7 transcription terminator-deleted vector was used to synthesize the longer mRNA of the target gene because the longer mRNA is expected to reduce the availability of tree ribosomes. In both methods, the percentage of soluble expression increased when the expression rate slowed down, and more than 93% of rhGH expressed was a soluble form in the T7 transcription terminator-deleted expression system.
Keywords
Soluble form; inclusion body; T7 transcription terminator; human growth hormone; E. coli;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 8  (Related Records In Web of Science)
연도 인용수 순위
1 Eom, G. T., J. S. Rhee, and J. K. Song. 2006. An efficient secretion of type I secretion pathway-dependent lipase, TliA, in Escherichia coli: Effect of relative expression levels and timing of passenger protein and ABC transporter. J. Microbiol. Biotechnol. 16: 1422-1428   과학기술학회마을
2 Goh, L. L., P. Loke, M. Singh, and T. S. Sim. 2003. Soluble expression of a functionally active Plasmodium falciparum falcipain-2 fused to maltose-binding protein in E. coli. Protein Expr. Purif. 32: 194-201   DOI   ScienceOn
3 Bukau, B. and A. L. Horwich. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92: 351-366   DOI   ScienceOn
4 Jeong, H. Y., J. Y. Lee, and T. H. Park. 2004. Specificity of enzymatic in vitro glycosylation by PNGase F: A comparison of enzymatic and non-enzymatic glycosylation. Enzyme Microbial Technol. 35: 587-591   DOI   ScienceOn
5 Davis, G. D., C. Elisee, D. M. Newham, and R. G. Harrison. 1999. New fusion protein systems designed to give soluble expression in E. coli. Biotech. Bioeng. 65: 382-388   DOI   ScienceOn
6 Chen, J.-Y, Y.-L. Liao, T.-H. Wang, and W.-C. Lee. 2006. Transformation of Escherichia coli mediated by magnetic nanoparticles in pulsed magnetic field. Enzyme Microbial Technol. 39: 366-370   DOI   ScienceOn
7 Kim, S.-G, J.-A. Kim, H.-A. Yu, D.-H. Lee, D.-H. Kweon, and J.-H. Seo. 2006. Application of poly-arginine fused minichaperone to renaturation of cyclodextrin glycosyltransferase expressed in recombinant Escherichia coli. Enzyme Microbial Technol. 39: 459-465   DOI   ScienceOn
8 Song, H. and S. Y. Lee. 2006. Production of succinic acid by bacterial fermentation. Enzyme Microbial Technol. 39: 352-361   DOI   ScienceOn
9 Guan, Y.-X., H.-X. Pan, Y.-G. Gao, S.-J. Yao, and M. G. Cho. 2005. Refolding and purification of recombinant human interferon-c expressed as inclusion bodies in Escherichia coli using size exclusion chromatography. Biotechnol. Bioprocess Eng. 10: 122-127   과학기술학회마을   DOI
10 Moore, J. T., A. Uppal, F. Maley, and G. F. Maley. 1993. Overcoming inclusion body formation in a high-level expression system. Protein Expr. Purif. 4: 160-163   DOI   ScienceOn
11 Nigro, M., V. Martin, F. Kaufer, L. Carral, S. O. Angel, and V. Pszenny. 2001. High level of expression of the Toxoplasma gondii recombinant Rop2 protein in E. coli as a soluble form for optimal use in diagnosis. Mol. Biotechnol. 18: 269-273   DOI   ScienceOn
12 Lee, S. G., K. S. Hwang, and C. M. Kim. 2005. Dynamic behavior of regulatory elements in the hierarchical regulatory network of various carbon sources-grown Escherichia coli. J. Microbiol. Biotechnol. 15: 551-559   과학기술학회마을
13 Jin, J. H., K. K. Choi, U. S. Jung, Y. H. In, S. Y. Lee, and J. Lee. 2004. Regulatory analysis of amino acid synthesis pathway in Escherichia coli: Aspartate family. Enzyme Microbial Technol. 35: 694-706   DOI   ScienceOn
14 Oh, J. S. and T. H. Park. 2006. Late gene mutants of bacteriophage $\lambda$ as an efficient expression vector. Enzyme Microbial Technol. 39: 420-425   DOI   ScienceOn
15 Collins-Racie, L. A., J. M. McColgan, K. L. Grant, E. A. Di-Blasio, S. J. M. McCoy, and E. R. LaVallie. 1995. Production of recombinant bovine enterokinase catalytic subunit in E. coli using the novel secretory fusion partner DsbA. Bio/Technology 13: 982-987   DOI   ScienceOn
16 Scein, C. H. 1989. Production of soluble recombinant proteins in bacteria. Bio/Technology 7: 1141-1148
17 Studier, F. W. and B. A. Moffatt. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189: 113-130   DOI
18 Guise, A. D., S. M. West, and J. B. Chaudhuri. 1996. Protein folding in vivo and renaturation of recombinant proteins form inclusion bodies. Molec. Biotechnol. 6: 53-64   DOI   ScienceOn
19 Nygren, P.-A., S. Stahl, and M. Uhlen. 1994. Engineering proteins to facilitate bioprocessing. Trends Biotechnol. 12: 184-188   DOI   ScienceOn
20 Kim, Y. S. and H. J. Cha. 2006. Solubility dependency of coexpression effects of stress-induced protein Dps on foreign protein expression in Escherichia coli. Enzyme Microbial Technol. 39: 399-406   DOI   ScienceOn
21 Park, S.-L., E.-J. Shin, S.-P. Hong, S.-J. Jeon, and S.-W. Nam. 2005. Production of soluble human granulocyte colony stimulating factor in E. coli by molecular chaperones. J. Microbiol. Biotechnol. 15: 1267-1272   과학기술학회마을
22 Ro, H. S., H.-K. Park, M.-G Kim, and B. H. Chung. 2005. In vitro formation of protein nanoparticle using recombinant human ferritin H and L chains produced from E. coli. J. Microbiol. Biotechnol. 15: 254-258   과학기술학회마을
23 Vind, J., M. A. Sorensen, M. D. Rasmussen, and S. Pedersen. 1993. Synthesis of proteins in E. coli is limited by the concentration of free ribosome. J. Mol. Biol. 231: 678-688   DOI   ScienceOn
24 Studier, F. W. 1991. Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J. Mol. Biol. 219: 37-44   DOI
25 Ow, D. S.-W., P. M. Nissom, R. Philp, S. K.-W. Oh, and M. G.-S. Yap. 2006. Global transcriptional analysis of metabolic burden due to plasmid maintenance in Escherichia coli DH5$\alpha$ during batch fermentation. Enzyme Microbial Technol. 39: 391-398   DOI   ScienceOn
26 Ingraham, J. L., O. Maaloe, and F. C. Neidhardt. 1983. Growth of the Bacterial Cell. Sinauer Associates, Inc., Sunderland, MA, U.S.A
27 Loo, T., M. L. Patchett, G. E. Norris, and J. S. Lott. 2002. Using secretion to solve a solubility problem: High yield expression in E. coli and purification of the bacterial glycoamidase PNGase F. Protein Expr. Purif. 24: 90-98   DOI   ScienceOn
28 Park, H. J., E. J. Kim, T. Y. Koo, and T. H. Park. 2003. Purification of anti-apoptotic recombinant 30K protein produced in Escherichia coli and its anti-apoptotic effect in mammalian and insect cell systems. Enzyme Microbial Technol. 33: 466-471   DOI   ScienceOn