Expression of Recombinant Human Growth Hormone in a Soluble Form in Escherichia coli by Slowing Down the Protein Synthesis Rate

  • Koo, Tai-Young (School of Chemical and Biological Engineering, Seoul National University) ;
  • Park, Tai-Hyun (School of Chemical and Biological Engineering, Seoul National University)
  • Published : 2007.04.30

Abstract

Formation of inclusion bodies is usually observed when foreign proteins are overexpressed in E. coli. The formation of inclusion bodies might be prevented by lowering the rate of protein synthesis, and appropriate regulation of the protein expression rate may lead to the soluble expression. In this study, human growth hormone (rhGH) was expressed in a soluble form by slowing down the protein synthesis rate, which was controlled in the transcriptional and translational levels. The transcriptional level was controlled by the regulation of the amount of RNA polymerase specific to the promoter in front of the rhGH gene. For lowering the rate of translation, the T7 transcription terminator-deleted vector was used to synthesize the longer mRNA of the target gene because the longer mRNA is expected to reduce the availability of tree ribosomes. In both methods, the percentage of soluble expression increased when the expression rate slowed down, and more than 93% of rhGH expressed was a soluble form in the T7 transcription terminator-deleted expression system.

Keywords

References

  1. Bukau, B. and A. L. Horwich. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92: 351-366 https://doi.org/10.1016/S0092-8674(00)80928-9
  2. Chen, J.-Y, Y.-L. Liao, T.-H. Wang, and W.-C. Lee. 2006. Transformation of Escherichia coli mediated by magnetic nanoparticles in pulsed magnetic field. Enzyme Microbial Technol. 39: 366-370 https://doi.org/10.1016/j.enzmictec.2005.11.035
  3. Collins-Racie, L. A., J. M. McColgan, K. L. Grant, E. A. Di-Blasio, S. J. M. McCoy, and E. R. LaVallie. 1995. Production of recombinant bovine enterokinase catalytic subunit in E. coli using the novel secretory fusion partner DsbA. Bio/Technology 13: 982-987 https://doi.org/10.1038/nbt0995-982
  4. Davis, G. D., C. Elisee, D. M. Newham, and R. G. Harrison. 1999. New fusion protein systems designed to give soluble expression in E. coli. Biotech. Bioeng. 65: 382-388 https://doi.org/10.1002/(SICI)1097-0290(19991120)65:4<382::AID-BIT2>3.0.CO;2-I
  5. Eom, G. T., J. S. Rhee, and J. K. Song. 2006. An efficient secretion of type I secretion pathway-dependent lipase, TliA, in Escherichia coli: Effect of relative expression levels and timing of passenger protein and ABC transporter. J. Microbiol. Biotechnol. 16: 1422-1428
  6. Goh, L. L., P. Loke, M. Singh, and T. S. Sim. 2003. Soluble expression of a functionally active Plasmodium falciparum falcipain-2 fused to maltose-binding protein in E. coli. Protein Expr. Purif. 32: 194-201 https://doi.org/10.1016/S1046-5928(03)00225-0
  7. Guan, Y.-X., H.-X. Pan, Y.-G. Gao, S.-J. Yao, and M. G. Cho. 2005. Refolding and purification of recombinant human interferon-c expressed as inclusion bodies in Escherichia coli using size exclusion chromatography. Biotechnol. Bioprocess Eng. 10: 122-127 https://doi.org/10.1007/BF02932581
  8. Guise, A. D., S. M. West, and J. B. Chaudhuri. 1996. Protein folding in vivo and renaturation of recombinant proteins form inclusion bodies. Molec. Biotechnol. 6: 53-64 https://doi.org/10.1007/BF02762323
  9. Ingraham, J. L., O. Maaloe, and F. C. Neidhardt. 1983. Growth of the Bacterial Cell. Sinauer Associates, Inc., Sunderland, MA, U.S.A
  10. Jeong, H. Y., J. Y. Lee, and T. H. Park. 2004. Specificity of enzymatic in vitro glycosylation by PNGase F: A comparison of enzymatic and non-enzymatic glycosylation. Enzyme Microbial Technol. 35: 587-591 https://doi.org/10.1016/j.enzmictec.2004.08.010
  11. Jin, J. H., K. K. Choi, U. S. Jung, Y. H. In, S. Y. Lee, and J. Lee. 2004. Regulatory analysis of amino acid synthesis pathway in Escherichia coli: Aspartate family. Enzyme Microbial Technol. 35: 694-706 https://doi.org/10.1016/j.enzmictec.2004.08.033
  12. Kim, S.-G, J.-A. Kim, H.-A. Yu, D.-H. Lee, D.-H. Kweon, and J.-H. Seo. 2006. Application of poly-arginine fused minichaperone to renaturation of cyclodextrin glycosyltransferase expressed in recombinant Escherichia coli. Enzyme Microbial Technol. 39: 459-465 https://doi.org/10.1016/j.enzmictec.2005.11.044
  13. Kim, Y. S. and H. J. Cha. 2006. Solubility dependency of coexpression effects of stress-induced protein Dps on foreign protein expression in Escherichia coli. Enzyme Microbial Technol. 39: 399-406 https://doi.org/10.1016/j.enzmictec.2005.11.040
  14. Lee, S. G., K. S. Hwang, and C. M. Kim. 2005. Dynamic behavior of regulatory elements in the hierarchical regulatory network of various carbon sources-grown Escherichia coli. J. Microbiol. Biotechnol. 15: 551-559
  15. Loo, T., M. L. Patchett, G. E. Norris, and J. S. Lott. 2002. Using secretion to solve a solubility problem: High yield expression in E. coli and purification of the bacterial glycoamidase PNGase F. Protein Expr. Purif. 24: 90-98 https://doi.org/10.1006/prep.2001.1555
  16. Moore, J. T., A. Uppal, F. Maley, and G. F. Maley. 1993. Overcoming inclusion body formation in a high-level expression system. Protein Expr. Purif. 4: 160-163 https://doi.org/10.1006/prep.1993.1022
  17. Nigro, M., V. Martin, F. Kaufer, L. Carral, S. O. Angel, and V. Pszenny. 2001. High level of expression of the Toxoplasma gondii recombinant Rop2 protein in E. coli as a soluble form for optimal use in diagnosis. Mol. Biotechnol. 18: 269-273 https://doi.org/10.1385/MB:18:3:269
  18. Nygren, P.-A., S. Stahl, and M. Uhlen. 1994. Engineering proteins to facilitate bioprocessing. Trends Biotechnol. 12: 184-188 https://doi.org/10.1016/0167-7799(94)90080-9
  19. Oh, J. S. and T. H. Park. 2006. Late gene mutants of bacteriophage $\lambda$ as an efficient expression vector. Enzyme Microbial Technol. 39: 420-425 https://doi.org/10.1016/j.enzmictec.2005.11.037
  20. Ow, D. S.-W., P. M. Nissom, R. Philp, S. K.-W. Oh, and M. G.-S. Yap. 2006. Global transcriptional analysis of metabolic burden due to plasmid maintenance in Escherichia coli DH5$\alpha$ during batch fermentation. Enzyme Microbial Technol. 39: 391-398 https://doi.org/10.1016/j.enzmictec.2005.11.048
  21. Park, H. J., E. J. Kim, T. Y. Koo, and T. H. Park. 2003. Purification of anti-apoptotic recombinant 30K protein produced in Escherichia coli and its anti-apoptotic effect in mammalian and insect cell systems. Enzyme Microbial Technol. 33: 466-471 https://doi.org/10.1016/S0141-0229(03)00149-2
  22. Park, S.-L., E.-J. Shin, S.-P. Hong, S.-J. Jeon, and S.-W. Nam. 2005. Production of soluble human granulocyte colony stimulating factor in E. coli by molecular chaperones. J. Microbiol. Biotechnol. 15: 1267-1272
  23. Ro, H. S., H.-K. Park, M.-G Kim, and B. H. Chung. 2005. In vitro formation of protein nanoparticle using recombinant human ferritin H and L chains produced from E. coli. J. Microbiol. Biotechnol. 15: 254-258
  24. Scein, C. H. 1989. Production of soluble recombinant proteins in bacteria. Bio/Technology 7: 1141-1148
  25. Song, H. and S. Y. Lee. 2006. Production of succinic acid by bacterial fermentation. Enzyme Microbial Technol. 39: 352-361 https://doi.org/10.1016/j.enzmictec.2005.11.043
  26. Studier, F. W. 1991. Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J. Mol. Biol. 219: 37-44 https://doi.org/10.1016/0022-2836(91)90855-Z
  27. Studier, F. W. and B. A. Moffatt. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189: 113-130 https://doi.org/10.1016/0022-2836(86)90385-2
  28. Vind, J., M. A. Sorensen, M. D. Rasmussen, and S. Pedersen. 1993. Synthesis of proteins in E. coli is limited by the concentration of free ribosome. J. Mol. Biol. 231: 678-688 https://doi.org/10.1006/jmbi.1993.1319